AD-A250 924 DTIC
AP 49 FLECTE

Ry, JUNS 19923 K

C

Svmbolic Model Checking

An approach to the state explosion problem

Ixenneth L. McMillan

May, 1992
CMU-CS-92-131

Submitted to Carnegie Mellon University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Computer
Science

©1992 Kenneth L. McMillan
This research was supported in part by a scholarship grant from
AT&T Bell Laboratories and in part by a National Science Foundation

grant. no. ('C'R-8722633.

The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official
policies. cither expressed or implied, of the [".5. government.

2-14319
\\\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\l\\\l\\
92 © Ui ni

——-—*

Keywords: formal verification, temporal logic, model checking,
state explosion problem. symbolic model checking, binary decision dia-
grams. cache consistency, cache coherence, protocol verification. hard-
ware description languages. SMV. asynchronous circuits. Petri nets.
occurrence nets, process invariants.

School of Computer Science

DOCTORAL THESIS IR el A S
in the field of e vl =
Computer Science - ‘.9 ‘]
SYMBOLIC MODEL CHECKING | % - -~ -
An Approach to the State Explosion Problem ‘Auai , ’Y P
7T e 1‘1A Lnd p—
KENNETH McMILLAN Dist | Speciar

Special

’\g\ l

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:
Ehnd M ij# Opad 3, 1992
MAJOHR PROFESSOR ! DATE
TZ; QM¢ — ‘//,? 7/ g2 _
APPROVED:

lpu-/(7

_#[30/ 12

PROVOST DATE

Dedicated to the memory of William L. McMillan

Abstract

Finite state models of concurrent systems grow exponentially as the
number of components of the system increases. This is known widely as
the state explosion problem in automatic verification. and has limited
finite state verification methods to small systems. To avoid this prob-
lem. a method called symbolic model checking is proposed and studied.
This method avoids building a state graph by using Boolean formulas
to represent sets and relations. :\ variety of properties characterized by
least and greatest fixed points can be verified purely by manipulations
of these formulas using Ordered Binary Decision Diagrams.

Theoretically, a structural class of sequential circuits is demon-
strated whose transition relations can be represented by polvnomial
space OBDDs. though the number of states is exponential. This re-
sult is born out by experimental results on example circuits and sys-
tems. The most complex of these is the cache consistency protocol of a
commercial distributed multiprocessor. The symbolic model checking
technique revealed subtle errors in this protocol, resulting from com-
plex execution sequences that would occur with very low probability in
random simulation runs.

In order to model the cache protocol. a language was developed for
describing sequential circuits and protocols at various levels of abstrac-
tion. This language has a synchronous dataflow semantics. but allows
nondeterminism and supports interleaving processes with shared vari-
ables. A system called SMV can automatically verify programs in this
language with respect to temporal logic formulas. using the symbolic
model checking technique.

A\ technique for proving properties ot inductively generated classes
of linite state systems is also developed. The proot is checked rutomat-
ically, but requires a user supplied process called a process invariant
to act as an inductive hypothesis. An invariant s developed for the
distributed cache protocol. allowing properties of systems with an ar-
bitrary number of processors to be proved.

Finally. an alternative method is developed for avoiding the state
explosion in the case of asynchronous control circuits. This technique
is based the nnfolding of Petri nets. and is used to check for hazards in
a distributed mutnal exclusion cirenit.

Acknowledgments

To the extent that the work in this thesis is worthy of credit. Ed
Clarke deserves a large portion of that credit, since his work is the
foundation for almost everyvthing in it. Ed got me started in the field
by teaching me what [know about verification. and opening doors for
me in the research community. His enthusiasm for my early, somewhat
untutored tentatives in the tield gave me the confidence to pursue my
own ideas. Another important influence on this work and its author
is Bob Kurshan. [n more than once instance. his insistence on solving
a particular problem led to a general solution in an unexpected way.
What [now know about the process of research I learned from Ed
Clarke and Bob Kurshan.

The work in this thesis also rests rather heavily on that of Randy
Brvant. To a certain extent. the svmbolic model checking technique
resulted from the fortunate coincidence of my being at the same insti-
tution as Randy. Finding an application for this technique was also a
more or less serendipitous occurrence. and for this I have to thank the
people at Encore Computer C'orporation, including Dyung Van Le. Jim
Schwalbe and Drew Wilson. for taking an interest in formal verification.
and generously allowing me to use their system as an application (and
to publish it no less!).

[must also thank David Long and Jerry Burch, who contributed
substantially to the ideas in this thesis. [owe special thanks to David
Long, who is a font of information. and who heiped me to solidify ideas
in countless discussions. when no doubt he had more important things
to do.

Thanks to Robert Bravton and the ("AD group at the University
of California at Berkeley. who gave this thesis a very careful and intel-
ligent reading, and to \llan Fisher. It was always a pleasure to have
discussions with Allan. and no doubt some of his insights can be found
interspersed in these pages. Of course. [am indebted to all the good
people who make the Carnegie Mellon School of Computer Science and
its facilities work. ("MU provides a nnique environment for graduate
students. and [consider myself privileged to have been a part of it.

Finally. to Tracyv Slein. the one indispensible person in the whole
process - [can’t thank vou enough.

Contents

1 Introduction

1.1 Background
1.1.1 Temporal logic
1.1.2 Automata theoretic models
1.2 Scopeof thethesis
1.3 Relatedresearch.
1.3.1 Reduction
1.3.2 Induction
1.3.3 Other symbolic methods
2 Symbolic model checking
2.1 Temporallogic
2.1.1 Linear time
2.1.2 Discrete time
2.1.3 Branching time 0.
2.2 The temporal logic CTL
2.2.1 Syntax and semantics ot CTL
2.2.2 Fixed point characterization of CTL
2.3 Symbolic C'TL model checking
2.3.1 Quantified Boolean formulas
2.3.2 Representing sets and relations
233 CTL formulas
2.3.4 Binary Decision Diagrams00
240 Exampleso
2,11 Synchronous state machines
2,42 Asvnchronous state machines
2.3 Graph width and OBDDs . . . 0o

3 CONTENTS
2.5.1 Bounded width circuits 63
2.3.2 Bounded tree-width circuits L. 66

2.6 Mu-Calculus model checking 71
2.6.1 Applications of the Mu-Calculus 73
2.6.2 Svmbolic algorithm T

2.7 C(Computing equivalence relations 7
2.7.1 State equivalence 30
2.7.2 Methods for functional composition 33
2.7.3 Experimental results 35

2.8 Relatedresearch. 38

3 The SMV system 97

3.1 An informal introductiono 98

3.2 The input language 108
3.2.1 Lexical conventions 108
3.2.2 Expressions Lo 108
3.2.3 Declarations 110
3.2.4 Modules Lo oo 114
3.2.5 Identifiers 116
3.26 Processes 117
3.2.7 Programso 117

3.3 Formal semantics 118
331 Themodel 118
3.3.2 Expressions 119
3.3 \ssignments and definitions 120
3.3.1 Variable declarations 121
33,5 Renamingo oo 121
3.3.6 Parallel composition 122
3.3.7 lnstantiation L 122
3.3.8 Specifications 123

4 A Distributed Cache Protocol 125

t.1 The Protocol, 127
L1l Processorso 128
1.1.2 The local UIC interface 133
{.1.3 The Remote UIC interface 137
L1.b Protocol example . 0 00 00000000000 138

CONTENTS Y

1.2 Verifying the protocol oo 141
14.2.1 Freedom from deadlock 141

4.2.2 Correcting the deadlock 145

4.2.3 Sequential consistency 147

42,4 Correctness of diagnostics 150

43 Evaluation oL oo 152

5 Induction and model checking 155
5.1 The general framework e e e e e 156
3.1.1 Induction in other models 139

3.2 Induction and SMV o Lo 159
5.2.1 Proving compositionality 159

5.2.2 Computing simulation relations 163

5.2.3 Induction and SMV.L 164

5.3 Example: The Gigamax protocol 165
54 Related research L0 Lo 168

6 A partial order approach 171
6.1 The unfolding operation 172
6.2 Applicationexample 00000 L. 182
6.3 Deadlock and occurrencenets 185
6.4 Relation to Al techniques 189
6.5 Evaluation 190

7 Conclusion 191
A Semantics of SMV.1 195
Al Themodel 195
N2 Expressions L 196
A3 Assignments and definitions 0000 L 197
A.l Variable declarations 0000 193
A5 Renamingo 198
A.6 Parallel composition 199
A7 Instantiationo 199
A.8 Programs and interleaving 200
A9 Specifications L0 201

10

(C'ONTENTS

Chapter 1

Introduction

There are several practical reasons for applying formal verification meth-
ods to computer systems. The most obvious is the high cost of correct-
ing errors in digital designs. This cost has been increasing with the ris-
ing level of integration in digital circuit technology. [t can be decreased
to an extent in application specific designs by the use of programmable
device technologies, but at least for the present, programmable logic
has distinct disadvantages in performance and area. Thus. there is a
growing demand for design methodologies that can yield correct de-
signs on the first fabrication run. Design errors that are discovered
hefore fabrication can also be quite costly. however. in terms of the en-
gineering effort required to correct the error. and the resulting impact
on devclopment schedules. At present. the best tools available to engi-
neers for finding errors before fabrication are simulators. which model
the behavior of a system tor predetermined or random input patterns.
The engineer using simulation is faced with two ill-characterized and
increasingly intractable problems. The first is creating a set of input
patterns that are sutficient to expose any incorrect behavior of the sys-
tem. and the second is determining the correct output of the syvstem
under these conditions. to be compared with the simulated output. In-
creased density of integration has allowed higher level functions such as
network protocols to be implemented in hardware. and as a result. the
problems of simulation have become critical. What seems to be needed
is a precise vet understandable way of specifving correct behavior. and
an exhaustive method of determining that the svstem model satisties

[l

12 CHAPTER I. INTRODUCTION

this specification for all input patterns. This is the meaning of formal
verification.

A formal verification framework has three basic elements - a math-
ematical model of the system to be verified. a formal language :. . fram-
ing the correctness problem, and a methodology for proving the state-
ment of correctness. One characteristic that many automatic verifica-
tion methodologies have in common is that they require an exhaustive
search of the state space of the model. Owing to simple combinatorics.
the size of this state space can be. and usually is. exponential in the
size of the system being modeled. This exponential growth in the state
space. known as the state erplosion problem is the limiting factor in
applving automatic verification methodologies to large svstems.

This thesis is directed toward solutions for the state explosion prob-
lem. This is essentially a question of methodology. but before we can
discuss methodology. we need to discuss somc of the models and for-
malisms that are commonly used in formal verification of hardware.

1.1 Background

The problem of hardware verification is in some ways similar to. and
in other ways different from the problem of proving correctness of pro-
grams. Digital systems are most similar to what Pnueli has charac-
terized as reactive programs [Pnu36], in that they receive input and
produce output in a continuous interaction with their environment.
rather than computing a single result and halting. In additi 'n. the he-
havior of digital systems is concurrent in the extreme. since every gate
in the system is simultaneously evaluating its output as a function of
its inputs,

1.1.1 Temporal logic

For reasoning about concurrent. reactive programs. Pnueli proposed
the use of a formal system originally studied bv philosophers. called
temporal logic {Pnu?7. Pnu36. MP31. Kro37]. In a temporal logic. the
usual operators of propositional logic are augmented by fense operators.
which are used to form assertions about changes in time. One can

I.1. BACKGROUND 13

assert. for example. that if proposition p holds in the present, then
proposition ¢ holds at some instant in the future, or at some instant in
the past. The temporal modalities can be combined to express fairly
complex statements about past. present and future. For example “if p
holds in the present. then at some instant in the future. p will have held
in the past.” A temporal system provides a complete set ot axioms and
inference rules for proving all validities in the logic for a given model of
time. such as partially ordered time. linearly ordered time. dense time.
and even branching time.

Temporal logic is powerful enough to define a semantics for pro-
grams which captures not only the traditional before and after con-
ditions of Floyd-Hoare styvle program proving, but also a wide variety
of temporal properties of programs. such as termination. possible ter-
mination. termination under fair scheduling of concurrent processes.
etc. [CE8la. BAMPSI1]. In the hardware area. Malachi and Owicki
used temporal logic to give a concise specification of the conditions
necessary for an asynchronous circuit to be speed independent [MOS!].
Bochmann used temporal logic to give a semantics for self timed cir-
cuits, and used this system to verify a corrected version of an arbiter
circuit [Sei80a). Formal proofs of this kind are extremely tedious and
difficult, however. and computationally intractable to automate. To
simplify the hand proot. Bochmann used a somewhat oversimplified se-
mantics for the circuit elements (neglecting gate delay) and as a resuit.
missed a bug in the design. which was demonstrated by Dill [D('36].

A more practical application of temporal logic in hardware veri-
fication. called model checking. was introduced by Clarke and Emer-
son [CE81b] and independently by Quielle and Sifakis [QS81]. [nstead
of proving the validity of a logical formula for all models. a model
checker determines the truth value of the formula in a specific finite
model. For branching time logic. the model checking problem is com-
putationally tractable. even though the validity problem is intractable.
Here an important distinction between hardware and software svstems
comes into play - hardware svstems are finite-state. This allows the
proof procedure to be automated using model checking, while maintain-
ing the formal elegance of temporal logic for specifying correct behavior.

The method of (larke and Emerson first builds a complete state
graph of the svstem from a description in an appropriate langnage.

14 CHAPTER 1. INTRODUCTION

The truth value of a formula in the logic is determined by an algorithm
which propagates formulas in this state graph until a fixed point is
reached. Besides being fast and fully automatic, this technique has the
advantage that it can produce state sequences as counterexamples when
the formula being checked is false. This has made it possible to find
bugs in a number of small but fairly subtle circuit designs [BCDM86,
BCD86]. including the one verified by Bochmann.

For linear time logic. there is a decision procedure that translates a
formula into an automaton by means of a tableau construction [RUT1,
CE81b, BAMPS1]. This construction is similar the the semantic tab-
leaux method of constructing proofs in standard logic [Smu68|. Each
state in the tableau is associated with a set of formulas which are true
in that state. Since the number of states in the tableau is exponential
in the size of the formula. the method is not practical for proofs about
very large systems. However, the tableau method can be used in a
model checking framework, yielding an algorithm which is exponential
in the size of the formula but linear in the size of the model [LP85].

1.1.2 Automata theoretic models

An alternative to the temporal logic framework is to cast the correct-
ness problem in terms of a relation between the external or observable
behaviors of two processes. One way to define this relation is by con-
sidering the set of all possible sequences of communications between
processes. For example. in the L-automata model of Kurshan [Kur36].
these sequences are defined by the language of an w-automaton. Cor-
rectness is framed as the containment of the language of one automaton
in the language of another. This asvmmetric relation makes it possible
to "underspecify” a system. that is. to leave some choices open to the
designer. The use of automata on infinite strings makes it possible to
express liveness properties. For instance. one can easily construct an
automaton whose language is the set of all infinite strings such that
every time a message is sent on some channel. one is eventually re-
ceived. Language containment between «-automata can be established
by an algorithm which searches for cycles in the state space of a product
automaton.

Van de Snepscheut [vd$33] and Dill [Dil88] have used trace the-

1.1. BACKGROUND 15

ory to model speed independent circuits [Sei30b]. A trace is simply a
history of the communications between a process and its environment.
The trace sets of two process can be combined in a way which mod-
els communication between the two processes by synchronizing signals
sent and received on the same channel. Dill’s system is a circuit alge-
bra which has both a structural interpretation (describing the physical
connection of wires) and a trace theoretic interpretation (describing
the communications along those wires). The actual trace sets are de-
fined by the languages of finite automata (in this case. automata on
finite strings. hence liveness cannot be modeled). A relationship called
conformance between two processes determines when one process can
safely be substituted for the other in all environments. Conformance
can be tested by a polynomial algorithm which searches the state space
of a finite automaton derived from the two processes.

In the Calculus of (‘'ommunicating Systems (C'CS) [Mil30]. Milner
takes a different approach in which external behavior is modeled by a
tree rather than a set of sequences. The way CCS models communi-
cation is not well suited to modeling hardware. since in CCS a signal
cannot be sent until a receiver is ready to receive it. In hardware. a re-
ceiver cannot generally prevent a signal from being sent. Also, in C'CS.
communication is always between two processes. while in hardware sig-
nals are often broadcast to many receivers. A calculus specialized to
circuits called CIRCAL [Mil83] was developed to remedy these prob-
lems. The notion of correctness in process calculi is called observational
equivalence, meaning that an observer cannot distinguish between two
processes by any experiment. This notion of correctness is extremely
strict. since it doesn’t allow the specifier to leave any choice up to
the designer regarding the externally visible behaviors. Observational
equivalence can- be proved by establishing a relation called bisimula-
tion between the two processes. For finite state processes. there is an
polvnomial time algorithm for bisimulation which is very similar to
the coarsest partitioning algorithms used for state machine minimiza-
tion [NH84].

All of these methods can be viewed as variations on the theory of
finite automata. tailored for modeling certain properties of a particu-
lar class of systems. In fact. the antomata theoretic approach is not
very far from the temporal logic approach in practice. The difference

16 CHAPTER 1. INTRODUCTION

is mostly a question of notations, since the tableau method provides a
way of translating a temporal logic formula into an automaton. Al-
though temporal logic is not as expressive as automata in characteriz-
ing classes of sequences. it has been shown by Wolper that temporal
logic can be extended using right linear grammars to make it as ex-
pressive as automata without increasing the complexity of the decision
procedure {Wol33]. ('larke and Kurshan have also proposed a branch-
ing time logic in which the temporal operators are defined by finite
w-automata [CGR3Y].

What all of the above systems have in common is that correctness.
once formalized. can be determined by an algorithm that searches the
entire state space of a finite state model. Such methods have the ad-
vantage of being fullv automatic, but invariably suffer from the state
explosion problem.

1.2 Scope of the thesis

This thesis explores methods of state space search that avoid the state
explosion problem by not explicitly representing the states of the model.
To do this. some revolutionary new techniques are borrowed from the
area of switching function analysis. In this domain. a combinational ex-
plosion also arises. since the number of input combinations to a Boolean
function is exponential in the number of inputs. New techniques for
Boolean comparison avoid this problem by representing Boolean func-
tions with a reduced torm of decision graph called an Ordered Binary
Decision Diagram (OBDD) [Bry36]. These decision graphs provide a
compact canonical form for Boolean functions. To apply this idea to
temporal verification. we observe that if the state of a svstem is rep-
resented by a vector of Boolean variables. then a set of states can be
represented by a Boolean function which returns true for all states in
the set. Similarlv. a relation «+ Ry between states can be represented
bv a Boolean function of two sets of variables. one set representing «x
and the other representing y. In this wav. a model checking algorithm
can be developed which uses OBDDs to represent sets and relations.
Borrowing terminology from Brvant. this technique is called symbolic
model checking. since symbolic variables ave used 1o represent the com-

1.2. SCOPE OF THE THESIS 17

ponents of the system state rather than numeric values. Using symbolic
model checking, we can can automatically verify some regularly struc-
tured systems with literally astronomical numbers of states.

The principle contributions of this work are detailed below:

The symbolic model checking method. A technique is developed for
state space search using Ordered Binary Decision Diagrams. We show
that any algorithm that can be expressed in a fixed point logic called
the Mu-Calculus can be computed using this method. These include al-
gorithms for all of the correctness notions enumerated above. including
('TL model checking (with tairness constraints), the linear time tableau
method. conformance. observational equivalence. language containment
for w-automata, Mealy machine equivalence. and others. From a the-
oretical point of view. a structural class of sequential circuits is iden-
tified whose transition relations can be represented by a polynomially
bounded OBDDs. This theoretical result is born out by experiments on
classes of regularly structured circuits. for which the time used by the
symbolic model checking method is found to be polynomially bounded
in the circuit size. In addition. some experiments are reported using
symbolic model checking to compute the equivalence relation between
states of a finite state machine. Several techniques are advanced which
improve the efficiency of this computation in practice.

The SMV system. A symbolic model checking system called SW 1V is
presented. This syvstem permits the automatic verification of programs
written in a specialized language for describing concurrent finite state
svstems and protocols. This language is somewhat similar to LUS-
TRE [CHPPS7] in its synchronous dataflow semantics. but has several
unique aspects. For example. it allows systems to be modeled non-
deterministically for purposes of abstraction. it allows arbitraryv inter-
leaving of concurrent processes. and it allows programs to.be annotated
with assertions in branching rime temporal logic.

Formal verification of the Fncore (Jigamar cache consistency pro-
tocol. The cache consistency protocol of a distributed shared-memorv
multiprocessor called the Encore (iigamax is modeled in the SMV lan-
guage and verified using the svmbolic model checker. Running in min-
ntes. the svmbolic model checker discovered errors in this system which
were not discovered by simulation. in spite of the very large state space
of the model [MS91]. This experiment shows that the model checking

13 (CHAPTER I. INTRODUCTION

technique can be used etfectively in an industrial setting tor highly com-
plex systems. [t also sheds light on issues involved in modeling such
protocols as finite state systems. and the kinds of errors that can be
found by model checking that are not likely to be found by simulation.

Induction over processes. \ partially automated method of induc-
tion i1s described for proving properties of parameterized classes of de-
signs. The method applies to a variety of process models. requiring of
the model only certain simple algebraic properties. The SMV svstem
is extended to support proof by induction. allowing some properties of
the Gigamax cache protocol to be verified for configurations of arbitrary
size.

Verification using occurrence nets. An alternative method for avoid-
ing the state explosion is examined. This technique avoids considering
all of the possible interleavings of concurrent actions by using a partially
ordered representation of behavior called an occurrence net [NPW31].
This method is used to verify that a design for an asynchronous dis-
tributed mutual exclusion circuit is hazard free (this example is also
used for the symbolic model checking method). Using this technique,
we also find empirically that the run time is polynomial in the number
of components of the system, while the number of states is exponential.

1.3 Related research

Since the state explosion problem 1s ubiquitous in the verification of
computer systems and protocols. many researchers in the area have
studied 1t.

1.3.1 Reduction

The most common approach is based on reduction - reducing the cor-
rectness problem to a similar problem in a smaller state space. This is
generally done by replacing processes in the model by smaller processes
that have similar or identical communication behavior. T'he most gen-
eral framework for this kind of reduction is that of Kurshan [Kurd7].
Using homomorphic reductions of w-automaton models. it is possible
to simplify not only the internal state of a process. but also its external

1.3. RELATED RESEARCH 19

communications. In this methodology. one generally builds a hierarchy
of reductions, in which processes at the lowest level are reduced. then
combined at the next higher level and further reduced. etc. Kurshan
advocates building this hierarchy from the top down. so that the most
abstract models can be verified bhefore details are filled in at the next
lower level.

.\ hierarchical approach was also taken by Dill in his trace theoretic
svstem for speed independent circuits [Dil88]. In this case. the reduc-
tion is obtained mostly by hiding internal signals of a module. There is
no provision for abstracting the signals by which the module commu-
nicates with its environment. That is. communication always remains
at the same level. that of digital signal transitions.

The reduction approach is generally not automatic. Usually, the
recduced process is obtained in an «ad hoc manner. and the validity of
the reduction is then tested automatically. Some methods have been
proposed for obtaining reduced processes automatically, however. For
example. in a method called compositional model checking, a state min-
imization procedure is used to obtain a reduced process that is equiv-
alent to the original process with respect to observation via its inputs
and outputs {CLM89b. CLM89a]. This reduction preserves the truth
value of all formulas in a suitable logic. Graf and Steffen have also stud-
ted minimization with respect to a suitable notion of equivalence as a
reduction technique [{GS91]. Minimization techniques are fairly strict
in terms of the required relation hetween the original and reduced pro-
cesses. however. As a result. the reduction that can be obtained using
these techniques is not generally as great can bhe obtained using more
flexible but unautomated methods.

The svmbolic model checking technique is not reallv an alternative
to reduction methods. but is complementary to them. In general. the
larger the state space that can be searched automatically. the less the
need for reduction. For example. Dill used a reduction (constructed by
hand) to verify a speed independent distributed mutual exclusion ring
circuit [Dil33]. Using svmbolic model checking. there is no need for a
reduction ~ the verification time is polynomial in the size of the ring (cf.
chapter 2). On the other hand. symbolic model checking techniques can
be used to implement the validity test for reductions (¢f. chapter 3).
hence the two techniques can be combined.

20 CHAPTER 1. INTRODUCTION

1.3.2 Induction

In systems of many identical processes, it is sometimes possible to re-
duce an arbitrary number of processes to a single process while retain-
ing certain properties of interest. For example, Browne. Clarke and
Grumberg proposed a reduction technique of this sort which preserves
the truth value of formulas in a suitably restricted logic with process
quantifiers [BCG86]. Unfortunately, the reduction. a form of bisimula-
tion, had to be established by hand. There was no automated way of
checking it. Kurshan and McMillan proposed an inductive method of
establishing the reduction that could be checked automatically [KM389).
The method is also less restrictive in terms of the properties that can
be proved since it does not rely on bisimulation. This method is used
in chapter 3. A similar method was described independently by Wolper
and Lovinfosse [WL89]. Another inductive technique has been de-
scribed by Shtadler and Grumberg {SG89]. This technique is somewhat
more flexible in that it treats networks generated by context free gram-
mars. but is limited to bisimulation as a reduction technique. A more
detailed comparison of these methods can be found in chapter 3.

1.3.3 Other symbolic methods

Coudert and Madre have described a method for verifving finite state
machines using Ordered Binary Decision Diagrams which is similar to
symbolic model checking [CBM89]. The symbolic model checking tech-
nique was developed in 1987. The technique of Coudert and Madre
appears to have been developed two vears later [{CouYl} but indepen-
dently. There are several differences of approach between the two
methods. Symbolic model checking is directed mostly toward prov-
ing temporal properties of finite state systems. whereas Coudert and
Madre have concentrated mostly on proving equivalence of determinis-
tic Mealy machines (though they also discuss temporal logic [("MB91]).
Testing Mealy machine equivalence is useful. for example. when one is
mapping a design from one technology to another. but is a fairly lim-
ited form of verification. since the specification is at the same level
of detail as the implementation. Also. in this work. we consider the
performance of algorithms mostly in terms of asvmptotic behasvior for

1.3. RELATED RESEARCH 21

regularly structured classes of systems. while Coudert and Madre have
considered mostly a set of benchmark circuits for synthesis. This makes
it difficult to determine how well their technique scales with circuit size.
Finally, Coudert and Madre have not as vet reported any results for
testing equivalence of two different implementations ot the same finite
state machine. In practice. they have only used symbolic techniques to
generate the set of reachable states of a finite state machine. This infor-
mation is useful for test generation and sequential svnthesis [TSL*90).
but these experiments provide no information about how well the tech-
nique works for verification. On the other hand. the svmbolic model
checking technique has heen applied to the verification of an industrial
design for a distributed cache consistency protocol (cf. chapter 4). A
more detailed description of the work of C'oudert and Madre. and oth-
ers using OBDDs for sequential civcuit verification. can be found in
chapter 2.

(V]
[3]

CHAPTER 1.

INTRODUCTION

Chapter 2

Symbolic model checking

As mentioned in the introduction. a formal verification system has sev-
eral basic elements. First. we require a model. A model is an imaginary
universe, or more generally. a class of possible imaginary universes. To
make our model meaningful. we require a theory that predicts some
or all of the possible observations that might be made of the model.
An observation generally takes the form of the truth or talsehood of a
predicate, or statement about the model. Finally, to verify something
meaningful about the model, we require a methodology for proving state-
ments that are true in the theorv.

In program proving, the universe is a totallv imaginary one. driven
bv mechanisms (the compiler and hardware) of which the programmer
has no knowledge. The logician is free to assign any semantics at all
to programs. provided the compiler writer and hardware designer agree
to implement them. This makes program proving an artificial science.
in the sense that our theory is true because we sav it 1s. In contrast. a
hardware verification svstern requires a model of a real physical system.
The underlving physical mechanism is still invisible to us (we can only
postulate its existence). but we can empirically construct a model which
predicts the necessary ohservations with a sufficient degree of accuracy
for our purposes (the verification of digital circuits). [t turns out that
the required degree of accuracy is not very large. Though quite accurate
models are possible. using partial differential equations to describe the
time evolution of lields and particle densities. a suitable design stvle
makes it possible to consider onlv the digital (one or zero) value of

23

24 ('HAPTER 2. SYMBOLIC MODEL CHECKING

voltages. ignoring entirely the exact voltage within the digital ranges,
and the time it takes to switch from one range to another. Depending on
the design stvle (eg.. synchronous or self timed), different models may
be appropriate. In certain rare cases. we may have to use differential
equations to model the analog behavior of circuits (for example. when
metastability arises). In this thesis. though. we will consider only fairly
abstract models of circuits as finite state machines. Thus. we return to
the science of the artificial. wherein we choose the theorv to suit our
needs. but with the understanding that a method exists for translating
our models into real systems.

The kind of theory that emerges for the model depends to a large ex-
tent on the kind of experiments the observer is able to perform. For ex-
ample. in traditional program proving systems. the observer is allowed
to set up the initial state of the program. wait for the program to ter-
minate. and then examine the final state. The theory of this model can
be expressed in a kind of before-and-after logic whose axioms determine
the semantics of programs. For example. in Floyd-Hoare logic [Hoa69],
the formula

{true} ¢ = y {z =)
is an axiom: for any initial condition. after the program r := y termi-

nates. .r and y have the same value. The fact that no other variables
change value in the process can also be expressed as an axiom:

&

{z=a} =y {z=0a}

provided neither = nor a depend on .

In this svstem. if the program fails to terminate (diverges). the
observer must simply wait forever. ie.. no observation is possible. One
might ask whether waiting forever is not itself an observation. that
is. should it not be possible to state in the semantics that a given
program terminates or doesn’t terminate tor a given initial condition?
This point can be argued either way for programs (since knowing that
a prograin terminates before infinity is not very practical information).
However. for digital systems (or reactive systems in general). it is clear
that simple before and after conditions are not a sufficient theory; tirst
of all termination for these svstems is not well defined. and moreover
the meaning of what these svstems are supposed to o is inseparably

2.1. TEMPORAL LOGIC 25

linked with the evolution of events in time [Pnu77].! What we need is
a formal theory in which we can reason about temporal aspects of a
svstem’s behavior.

2.1 Temporal logic

Temporal logic {or tense logic) is a system devised by philosophers ex-
pressly for making statements about changes in time [Bur34]. In tem-
poral logic. the formula F¢ is true in the present if ¢ is true at some
moment in the future. Similarly Pgq is true in the present if ¢ is true
at some moment in the past. These tense operators, F' and P, have
duals which are generally given their own names. The formula (¢ is
equivalent to —F-q, meaning that ¢ is true at every moment in the
tuture. The formula H¢ is equivalent to =P —¢, meaning that ¢ is true
at every moment in the past. These operators can give surprisingly
concise expressions of sentences with complex tense structures. For ex-
ample. ¢ = F Pq can be interpreted as “if ¢ holds in the present, then
at some time in the future ¢ will have held in the past”.

The usual model theoretic semantics given to temporal logic (and
other modal logics) is the so-called possible worlds semantics. A frame in
this semantics consists of a class S of states through which the system
evolves. and a relation < representing temporal order. A model is a
frame with a valuation L. which assigns truth or falsehood to every
atomic proposition (propositional letter) in every state.? The truth or
falsehood of temporal formulas is relative to the present state. [or
example. the formula Fq is true in state s iff there exists a state ¢ such
that p is true in state f and s < . Similarly. Pq is true in state s iff
there exists a state / such that pis true in state t and t < 5. Notice that
a temporal formula acts like an open sentence. with one free parameter
representing the present state. Thus it defines a class of states in which
the formula is true. Similarly. a state defines a class of formulas which
are true in that state.

"The question of termination is in any event not undecidable for hardware svs-
tems. since they are not computation universal (only programs are).

“These are usually called Kripke frames and Kripke models. after one of the first
mathematicians to give a model theoretic interpretation of modal logic.

26 CHAPTER 2. SYMBOLIC MODEL CHECKING

The choice of axioms in the logic can be used to characterize the
temporal ordering relation <. For example. the following axioms (in
addition to the propositional tautologies) exactly characterize those
frames whose < relation is a partial order (transitive and antisymmet-
ric) [Burd+]:

Glp = q) = (Gp= Gq) (2.1)
H(p=q)= (Hp= Hq) (2.2)
p= GPp (2.3)
p= HFp (2.4)

One inference rule (in addition to modus ponens) is required: by tem-
poral generalization. if o is provable. we infer that (ra and Ha (that
is. a tautology must hold true at all times. or perhaps. the rules of
sound inference do not change with time). By specializing this svstem
slightly. we can obtain logics characterizing a variety of models of time.
including linear time. discrete time, and branching (non-deterministic)
time. All of these results can be found in [Bur34].

2.1.1 Linear time

We usually think of time as a linearly ordered set, measuring it either
with the real numbers or the natural numbers. A frame is linearly
ordered if. in addition to being partially ordered. it is total. /e.. for all
states s.f. etther s <~ t, s =t or t < s. The temporal tframes in which
< is a linear order can be characterized by simply adding the following
two axioms to the bhasic set (thev are time reversal duals):

(FPq)= (PgVvqVv Fq) (2.5)
(PFq)= (PqVv gV Fq) (2.6)

Linear temporal logic is usually extended by the until operator and
the since operator. Informally. p {7 ¢ states that p will hold at some
moment in the fture. until which time ¢ will hold at all moments.
Similarly. p S ¢ states that p held at some moment in the past. since
which time ¢ has held at all moments. More preciselv. p {7 ¢ is true in
state s if there is some state t such that s < f and ¢ is true in state f.
and for all s < v < 1. pis true in state w.

2.1. TEMPORAL LOGIC 27

2,2 Discrete time

It 1s common in engineering to model time as a discrete sequence (mea-
sured by the integers). Discrete dynamics are commonly used. for ex-
ample. in signal processing and synchronous digital systems. A discrete
frame is one in which every state has an immediate successor and an
immediate predecessor. The linear discrete frames can be characterized
by adding the following two axioms to those for linear time logic:

pANHp= FHp (2.7)

pAGp= PGp (2.3)

It is useful in a discrete linear temporal logic to define a nert time
temporal operator. The formula X¢ is true 1n state s when there is an
immediate successor of «r in which ¢ is true. A state ¢ is an immediate
successor of s if s < ¢ and there does not exist a state u such that
s < u < t. Thus. Xgq is exactly equivalent to false [/ ¢, so its addition
does not increase the expressiveness of the logic.

2.1.3 Branching time

A branching frame is one in which the temporal order < defines a
tree which branches toward the tuture. Thus. every instant has a
unique past. but an indeterminate tuture. This is an inherently non-
deterministic model of time. and hence 1s well suited. for example, tor
defining a semantics of non-deterministic programs. .\ frame is tree
ordered when for all states s.t.u it t < s and u < sthent <u .t =u
or + > u. In other words. the past ol every state is linearly ordered.
The tree ordered frames can be characterized by simply dropping (2.6)
from the axioms of linear time logic.

Though pure tense logic can exactly characterize the hranching time
frames. it leaves something to be desired in expressing properties of
non-deterministic programs. For example. it is common in detining the
semantics of these programs to say that a program aborts iff it must
inevitably abort. This tunctionality can be implemented by backtrack-
ing. Similarly. a non-deterministic Turing machine terminates it it may
possibly terminate. These notions ol nevitability and possibility are

28 CHAPTER 2. SYMBOLIC MODEL CHECKING

not represented in an ordinary tense logic. They can be incorporated,
however. by combining notions from temporal logic and modal logic.
We would like to interpret the branching structure of time as mean-
ing that each instant of time has many possible futures. and that as time
evolves from present to future, these possibilities are reduced. Thus,
in the past. there existed possible futures which are now precluded.
This interpretation gives rise to notions of necessity (inevitability) and
possibility in tense logic [Tho84]. We think of the truth or falsehood of
tense formulas as being relative to a given branch of the tree ordered
frame (cne possible evolution of time into the future). A branch is de-
fined as a maximal linearly ordered set of states. We will write ¢[s. b]
if ¢ holds in state s in branch b. Thus. Fg[s.b] iff there exists a state
t in b such that s < ¢ and ¢[t.b]. Similarlv. Pg[s. 8] iff there exists a
state ¢ in b such that f < s and q[t.b]. The notion that ¢ is necessarily
true is represented by the formula Aq. We will say Ag(s. b] iff for all
branches 4’ containing s. q[s.#]. The notion that q is possibly true is
represented by the formula Eq. We will say Eq[s. b} iff for some branch
b’ containing s. ¢[s, b']. Notice that A and E provide a kind of second
order quantification over maximal linearly ordered subsets.?
According to this semantics for modal branching time logic, there
may be possibilities in the past that are foreclosed in the present. For
example. ¢ = HAFq is not valid. The fact of ¢ in the present does
not imply the necessity of ¢ in the past. Thus, modal branching time
logic might be termed the logic of regret. The logic can also express
useful semantic properties of non-deterministic programs [BAMPS1].
For example. if ¢ represents the fact of a program terminating, then
inevitable termination is expressed by the tormula A Fq (necessarily in
the tuture). Possible termination is expressed bv £ Fq (possibly in the
future ¢). If the proposition p represents a correct output of the pro-
gram. then (inevitable) partial correctness is expressed by the tormula
AG(q = p) (necessarily invariantly. termination implies correctness).
The somewhat odd but definable notion of possible partial correctness
is expressed by £(7/(q = p). Note that Pq. APq and E Pq are all log-
ically equivalent. since the past of a state is the same for anv branch.

#'lassically. the symbol O is used to represent necessity. and < is used to repre-
sent possibility. The symbols A and £ are used here for consistency with [BAMPS1].

2.2. THE TEMPORAL LOGIC CTL

Also note that A and E are dual. since Aq is equivalent to ~E£—q.

2.2 The temporal logic CTL

The temporal logic ("TL is a subset of modal branching time logic de-
fined by Clarke and Emerson [CE81b]. The acronym stands for Com-
putation Tree Logic.' In C'TL. temporal operators occur only in pairs
consisting of A or £. {ollowed by F. G. " or X. Thus. past time oper-
ators are not allowed. and tense operators cannot be combined directly
with the propositional connectives.

2.2.1 Syntax and semantics of CTL

The syntax of CTL formulas is given as follows:

. Every atomic proposition is a CTL formula.

2. If f and ¢ are ('TL formulas, then so are

-fo (fAhg) AXS EXS, A(fUg), E(fUg)

The remaining operators are viewed as being derived from these

according to the following rules:

vy
AFy
11y
A
EGf

—(=f A y)
Altrue {7 g)
E(true [y)
-~FE(true [T = f)
~A(true {7 ~f)

The truth or falsehood of formulas 1s defined with respect to a
Kripke model. but in a slightly non-standard way. For C'TL. the model
15 a triple (S.R.L). where N is the set of states. R is the transition

relation and L is the valuation.

The transition relation is the set of

*CTL is actually a subset of a more general temporal logic deseribed in [CES1a).
adopting the syntax of (BAMPR1].

30 CHAPTER 2. SYMBOLIC MODEL CHECKING

all pairs (s.t) such that ¢ is an immediate successor ot s. A branch-
ing model (a.k.a. computation tree) can be obtained by starting at a
designated state s and unwinding the graph (5. R) into an infinite tree
(provided every state has at least one successor). The semantics for
('TL given below is equivalent to the standard semantics with respect
to this infinite tree.

A path of a model K = (5, R, L) is an infinite sequence of states
(50.51.52...) € S such that each successive pair of states (s;.s;41) is
an element of R. Every path is maximal linearly ordered subset of the
tree structure unwound from sgq.

The notation A.s = f means that the formula f is true in state s
of Kripke model K. In the sequel, where the model is unambiguous,
we will write simply s | f. The interpretation of a CTL formula f
with respect to a Kripke model K" is given below. by recursion over the

structure of formulas:
skEp iff L(s)(p), where p is an atomic proposition
sE-f ff skES
sEfAg ff sEfandsEg
so = AXSf iff for all paths (so,51,...). 851 E f
so E EXf iff for some path (sg,81,...),31 F f
so B A(f U g) iff for all paths (sg, s1,...), for some 1.
s; =g and
forall y<i.s, = f
so E E(f U g) iff for some path (sg.sy....). for some ¢.
s; = ¢ and
forall y<i s, E=f

2.2.2 Fixed point characterization of CTL

Emerson and Clarke [CE81a] showed that various branching time prop-
erties of programs can be characterized as extremal fixed points of ap-
propriate continuous functionals. Later. they introduced the logic CTL.
and showed that its operators can be characterized in this way [("ES1b].
This characterization led to an etficient algorithm for the model check-
ing problem - determining whether a given ('TL formula is satisfied in

With one additional distinction: in ('TL. the future is taken to include the
present. Thus. if p holds in the present. then so does Fp.

2.2. THE TEMPORAL LOGIC CTL 31

a given state of a finite Kripke model.

To obtain the fixed point characterization, we will identify each
(CTL formula f with {s | s = f}. the set of states in which the formula
is true. In this wav. for example, true denotes the empty set. false
denotes S, and every subset of S represents an equivalence class of
formulas.® Let P(S) be the set of subsets of S. P(S) forms a lattice
under union and intersection. This lattice is ordered by set inclusion.
where P C Q if and only it PUQ = Q. A functional r[Y] is a formula
with one uninterpreted propositional letter Y. This defines a function
P(S) — P(S). where 7(P) is obtained by taking P for ¥ in 7. By
definition:

1. 7 is monotonic when P C (Q implies 7(P) C r{Q).
2. 1 is U-continuous when P, C P, C -+ implies 7(U; P;) = U;T(P).
3. Tis N-continuous when P, 2 P, D .- implies 7(N; P;) = N, 7(P;).

When the set S is finite. every increasing chain of subsets has a maxi-
mum element, and every decreasing chain has a minimum element. As
a result, in the finite case. monotonicity implies both U-continuity and
N-continuity.

A fixed point of 7 is any P such that 7(P) = P. Tarski [Tar33]
showed that a monotonic functional always has a least and a greatest
fixed point with respect to inclusion ordering:

Theorem 1 (Tarski-Knaster) Whenever r[Y| is monotonic. it has
a least fired point. denoted pY.7{Y)] and a greatest fired point. denoted
vY. (Y], When r[Y] 5 also U-continuous, @Y.7[Y] = Usort(false).
When t{Y] is also N-continuous. vY.7{Y] = Niso7!(true).

We can now characterize the ('TL operators in terms ot fixed points
of appropriate functionals:

Theorem 2 (Clarke-Emerson) Provided S is finite.

"This is essentially an algebraic interpretation of logic. where we embed the
formulas of the logic in a Boolean algebra (P(5).0.1.N. U, ~). with N represent-
ing conjunction. U representing disjunction and — (set complement) representing
negation

32 CHAPTER 2. SYMBOLIC MODEL CHECKING

[. EFp=uY.(pVv EXY)
2 EGp=vY.(pNEXY)
3. E(q U py=uY.(pV(qgN EXY))

There is a standard algorithm for computing the least [greatest]
fixed point of a monotonic functional. This is done by starting with
false {true] and iterating the functional until a fixed point is reached.
as shown below. Assuming S is finite. this procedure terminates in at
most |S| + 1 iterations with the least [greatest] fixed point of r{Y]:

to compute uY.7[Y] {or vY.7[¥]} :
let ¥ = false: {or ¥ = true}
do
let ¥/ =Y.} = r[¥]
until ¥/ =Y
return Y

Theorem 3 Gliven a finite set S. and a monotonic functional 7{Y],
the standard fized point algorithm computes uY.7[Y] {or vY.7[Y]} in
at most |S| + 1 iterations.

Proof. Since 7 is monotonic. °[false] C 7![false] C r*[false]- - -.
The longest strictly increasing chain of subsets of 5 has length |S] + 1.
Hence. there must be an ¢ such that 0 </ < |5] and 7[false] =
T+ {false] (otherwise there would be a strictly increasing chain of length
[S] + 2). Hence. the algorithm terminates after at most |S] + | itera-
tions. For anyv such i U,>g7/[false] = r'[false]. Hence. by theorem 1.

pY.r{Y] = 7 (false].

For the greatest fixed point. substitute true tor false. — for 'Z. and
decreasing for increasing in the above argument. O

H{aving a fixed point characterization of the C'TL operators allows us
to nse the standard fixed point algorithm to determine the set of states
of a given model in which a C'TL formula is true. \s an example.
consider computing £ Fp in the following Kripke model:"

“We represent a Kripke model pictorially by drawing the graph (5. R) and la-
beling each state with the atomic propositions which are trie in that state.

N
SV

THE TEMPORAL LOGIC CTL 33

QOO
Since |S| = 4. the number of iterations required to produce the fixed

point is at most 4. Therefore. let us compute r(false] for : = 1... 4.
where 7[¥] = pv EXY. After the first iteration, we have r'[false] =

pV E Xfalse = p:
QIO

After the second iteration. we have 7*{false] = pVv EXp:

@90

After the third iteration, we have r3[false] = pv EX(pV EXp):

@:_@’3—)@—-0
which is a fixed point. since the next iteration. 7[false] produces the
same result. Notice that at each iteration i. we have the set of states sq
such that there exists a path (so,s1.s2....) where pis true at some state
less than i. This algorithm can be thought of as a backward breadth

first search of the graph. In the end. we have labeled exactly the set of
states on a path to a state labeled with p.

As a second example. consider computing EC/p in the following
ikripke model:

p p p

After the Hrst iteration. we have r‘[trne] =pA L XNtrme =

34 CHAPTER 2. SYMBOLIC MODEL CHECKING

&8

After the second iteration. we have r#{true] = p A EXp:

P P P

After the third iteration. we have r3[true] = pA EX(p A EXp):
p p P

This is the greatest fixed point. since the next iteration r*[true] pro-
duces the same result. Notice that at iteration :. we have the set of
states such that there exists a path of length : where every state satisfies
p. When we reach a fixed point. every state in the set has a successor
in the set satisfving p. hence for every state in the set. there exists an
infinite path where p is always true.

The operators EX. E(") and EG are actually sufficient to char-
acterize the entire logic. since the remaining operators can be derived
from these three according to the following rules:

EFp = F(truel p)
ANp = -EX-p
Aip = ~ElF-p
Mg Upy = ~(E(=pl =g AN=p)v EG=p
For this reason. in the sequel. we will consider only the operators

EX. E(1)and EG. However. for completeness. here are the fixed
point characterizations of the remaining operators:

AGp = vYipA ANY)
Alqg U py = pYpvigAh AN

2.3. SYMBOLIC CTL MODEL CHECKING 35

The fixed point characterization provides an effective algorithm for
the model checking problem. In fact. a more efficient algorithm exists,
based on breadth first search and the calculation of strongly connected
components in the graph (S.R) [CES386]. Both of these algorithms
suffer from the state explosion problem. however: it is necessary to
construct the complete state graph of the svstem being modeled before
model checking can be applied. Since the number of states of a system
grows exponentially in the number ot its components. these algorithms
can only be applied to small systems.

2.3 Symbolic CTL model checking

In the previous section. we equated a ("TL formula with the set of states
in which the formula is true. We showed how the CTL operators can
thus be characterized as fixed points of certain monotonic functionals
in the lattice of subsets, and how these fixed points can be computed
iteratively. In this section. we equate sets and relations with Boolean
formulas. and show how set theoretic operations such as union. inter-
section and image can be characterized in terms of Boolean operations.
This allows the CTL model checking algorithm to be implemented using
well developed automatic techniques for manipulating Boolean formu-
las. Since the state graph is symbolically represented by a Boolean
formula. there is no need to actually construct it as an explicit data
structure. Hence. the state explosion problem can be avoided.

2.3.1 Quantified Boolean formulas

Quantitied Boolean Formulas (QBI7) are an extension of propositional
logic allowing quantifiers over propositional variables. Given a set V" of
propositional variables. QBEF(17) is the least set of formulas such that

[. true and false are formulas.
2. every variable in V' is a formula.
3. if p and ¢ are formulas. then so are p vV ¢ and —~p. and

Lol pis a formuda and o 0s in Vo then 3e. pis a formula.

36 CHAPTER 2. SYMBOLIC MODEL CHECKING

A truth assignment is a function V' — {false,true}. We equate each
QBF formula with the set of truth assignments that satisty the for-
mula. Thus. true represents the set of all truth assignments. false the
empty set. and a propositional variable v represents the set of all truth
assignments « such that a(v) = true. In addition.

l.«€(pVyq)ifand only if a € por a € ¢,
2. « € (—~p) if and only if « € p, and
3. « € (3v. p)iff a(v — true) € p or «(v — false) € p.

[t is useful to define an operator for QBF that substitutes a formula
for a variable. If p and ¢ are QBF formulas. and v is a variable. then
let @« € plv — ¢) if and only if «(v « (¢ € ¢q)) € p. Note that
quantification can be defined in terms of substitution. since Jv. p =
p(v — false) V p(v « true).

Quantification and substitution can also be defined for vectors of
variables. [f W = (wy,...,w) is an n-tuple of propositional variables

and Q = (q1,....¢a) an n-tuple of formulas. then let
1. « € 3W. piff for some b: W — B, a(w; — b(w;)) € p and

2w e p(l — Q) iff alw;, — (a € ¢;)) € p.

2.3.2 Representing sets and relations

The state ol a concurrent system is generally modeled as vector where
each component represents the state of one component of the syvstem.
For the moment. let us make the simplifving assumption that all of
the state components are Boolean valued. as is generally the case in
digital svstems. .\ state of the svstem can therefore be viewed as a
truth assignment to a set of propositional variables V' = {e1 ey, ... vn}
U'nder this interpretation. everv QBF formula over the set of state
variables 1 denotes a set of states. ¢e.. the set of truth assignments
which satisfy the formula. For example. if we have two state variables
a and b then the formula a v b represents all the states in which « is
true or his true.

2.3. SYMBOLIC C'TL MODEL CHECKING 37

In order to represent a binary relation with a QBF tormula. we
introduce two ordered sets of variables V' = {v;,....v2} and V' =
{vi..... vy}. The set V' represents the left argument of the relation.
and the set V' represents the right argument. By this arrangement. a
QBF formula R over the variables V" U V' stands for a binary relation
R'. the set of pairs (.. y) in (V' — B)? such that

(e y) € RO x(v! — y(vi)) € R (2.9)

As an example. if we have two state variables. « and b. then the QBF
formula a A b represents all ordered pairs of states such that « is true
in the first state. and b is true in the second state.

Uising this representation. we can express a variety of standard set
theoretic operations in terms of the QBF connectives. For example. the
union of two sets represented by A and B is A vV B, their intersection
is A A B and the complement of A is ~.4.

The image R'(Q) of a set @ via a binary relation R’ is the set of
all y such that for some r € @, (r.y) € R. If Ris a QBF formula
representing a relation R’. and Q is a QBF formula representing a set.
then

R(Q)=(IV.(RAQ))V' « V) (2.10)

We can prove this by simply expanding the definitions of the QBF
operators. as follows:

y 2 3V (RA QDY — V)

iff
gl — g)Y € VIR A Q)
iff
exists £ : V. — B st y(vl — y(e))vi — c(v)) € RAQ
iff
exists v : V" — Bs.t. (r.y) € R and r € ()
id
y e R(Q)

As an example. ler Q = v/ hand R =a Ab. Then

RQ) = (3V. ({a AKYA (aVh))V — V)

38 CHAPTER 2. SYMBOLIC MODEI CHECKING

= AV (arA))V = V)
= BV < V)
= b

The inverse image R~'(Q) of a set () via a binary relation R is the
set of all .« such that for some y € Q. R(x.y). If Ris a QBF formula
representing a relation, and @ is a QBF formula representing a set.
then

RYQ)=3V.(RAQ(V « V")) (2.11)

This can be shown by a derivation similar to the one above.

2.3.3 CTL formulas

We now have the necessary mechanics to represent Kripke structures
using QBF formulas. and to characterize the C'TL operators over these
symbolically represented Kripke structures using QBF operators. In
fact, it is only necessary to characterize the CTL operator £.X. since the
logical connectives have identical meanings in both logics. and the re-
maining C'TL operators have already been characterized as fixed points
of functionals using only EX and the logical operators.

To represent a Ikripke structure symbolically. we will assume two
sets of variables V' = {v,....v,} and V' = {v]...., v’ }. and a QBF
formula R on VU V" to represent the transition relation. This induces
a Kripke structure KNy g = (S, R'. L) where

. The state set S is the set of truth assignments V" — 3.

2. The transition relation R’ is the relation represented by the tor-
mula R. according to (2.9),

3. The valuation L vields the truth value of each variable r, in each
state s. That is. for all »; € V. L(s)(r;) = s(v;).

The complete procedure for symbolic model checking is characterized
by the following theorem:

Theorem 4 Let V' = {o..... eot and Vo= {eloo ol b be disjoint
sets of rariables. let R be a QBEF formula on VUV and let KNyyop be

2.3. SYMBOLIC CTL MODEL CHECKING 39

the induced Kripke model. [n this model. for all CTL formulas p and
q:

skEp ff s€p. wherepeV (2.12)
sEPVq Y s€(pVyg) (2.13)
skE-p f s€(~-p) (2.14)
sEEXp ff se(3V.(RAPV «— V")) (2.15)
sEEqU p) ff sepY (pV(gN EXY)) (2.16)
sEEGp f sevY (pANEXY). (2.17)

Proof. The first three are trivial matters of definition. For (2.13).
when we equate a formula witu the set of states satisfving it. £Xp is
just R'~Y(p), which is equal to 3V'. (RA p(V «— V")). The last two are
just theorem 2. O

The above theorem shows that we can solve the model checking
problem - ie., determining whether a given state in a symbolically
represented Kripke structure My y: g satisfies a formula f ~ purely by
manipulations of Boolean formulas. A key point is that the Kripke
structure itself is never built. Instead it is symbolically represented
by a QBF formula. As an example. consider a system with one state
variable h. Let the transition relation be represented by the formula
R = hvb. and let state s be (b — false). The induced Kripke structure
Wiy y.p is depicted below:

b=false b=true

Let’s say we want to determine whether or not s = F.X—-h. According
to theorem 4. we can evaluate the formula E.X -5 as follows:

EX~b

i

AR A (=) — b))
= 3W.((bV YA (=)

= 3b.(bnr=H)

= b

10 ('HAPTER 2. SYMBOLIC MODEL CHECKING

Hence. by theorem 4. s = £.X b iff the assignment (b — false) satisfies
b. which 1s false.

Now consider the problem of whether or not s |= EFh. Using the
standard fixed point algorithm. we get

r'[false] = bV EXfalse
= b
r[talse] = bV EXb
bv 3b.((bVv HYAH)
= true
rlialse] = bV EXtrue

= true

A fixed point is reached after two iterations. Hence. s &= EFb iff the
truth assignment (b «— false) satisfies true. which is true.

Note that when computing least (or greatest) fixed pointsof 7. 2" +1
iterations are required in the worst case. where n is the number of
propositional state variables. This is the length of the longest possible
strictly increasing (or decreasing) chain of subsets of & (not including
the empty set). plus one extra iteration to detect the fixed point. In
practice. however. the number of iterations required to reach a fixed
point can be quite small.

2.3.4 Binary Decision Diagrams

[t should be clear that to make the svmbolic model checking technique
practical. an etfictent automated method tor manipulating Boolean for-
mulas is required. Fortunatelv. a variety of such technigues have been
developed for the purpose of synthesizing digital circuits or comparing
the functionality of digital circuits. These techniques mav involve ap-
plving a set of rewriting rules to convert a given formula into a normal
form. Alternatively. a data structure may be nsed to represent the for-
mula as a Boolean function.® For example. a Boolean function may be

*Normally, when we discussing switching functions. we think of a Boolean for-
muda as represented by a function rather than the set of satistving truth assign-
ments of the formula. A Boolean formuin f over an ordered set of vanables

2.3. SYMBOLIC CTL MODEL CHECKING 11

represented by a truth table. or by a set of “cubes™ which cover the
truth table of the function. or by a binary decision tree. Each repre-
sentation has associated procedures for applying Boolean operations.
Any method of manipulating Boolean formulas that can implement the
operations pA ¢, pV q, =p, 3V’ .p and p(V « V') can be used in sym-
bolic model checking. By far the most effective method known to date.
however, is the Ordered Binary Decision Diagram method developed
by Bryant [Bry36].

Ordered Binary Decision Diagrams are a form of reduced decision
graph that give compact canonical representation for Boolean formu-
las. Thev have been used extensively for comparison of switching
functions [BBB*87. FB389]. The OBDD canonical representation for a
Boolean function can be derived by reducing a related structure called
an ordered decision tree. In an ordered decision tree. the value of the
function is obtained by descending the tree from the root to a leaf. At
each node along the path, one descends to the left child if the value of
the variable labeling the node is 0, and to the right child the value is .
Each leaf of the tree is labeled with a value 0 or | which gives the result
of the function. The tree is said to be ordered if the variables always
occur in the same order along any path from root to leaf. In this case,
reading the leaves from left to right, one obtains the truth table of the
function.

As an example. an ordered decision tree for the function ¢ AbV cAd
is depicted in figure 2.1.

The canonical OBDD form is a directed acvclic graph which can be
obtained from the ordered decision tree by the following two steps:

L. Combine any isomorphic subtrees into a single tree.
2. Eliminate any nodes whose left and right children are isomorphic.

Steps | and 2 can be applied in a bottom up fashion. to vield the
canonical OBDD representation in linear time. Bryant called this op-
eration Reduce. The size of the resulting graph is strongly dependent

Vo= e) oinduces a function f o {01} — {0.1} in the obvious way:
fley. L£n) = 1 iff the truth assignment (v; — »r,) satisfies f The two views
are equivalent. but the functional representation seems to be more standard in the
context of Boolean manipulation.

12 CHAPTER 2. SYMBOLIC MODEL CHECKING

0001000100011 1 11

Figure 2.1: Ordered Decision Tree

on the order of the variables. This variable ordering, however. is the
key to obtaining the reduced form. This is what distinguishes OBDDs
from the more general class of Binary Decision Diagrams described by
Akers [AkeT3|.

As an illustration of reduction to canonical form. consider the the
ordered decision tree of figure 2.1. The three nodes marked **” are
roots of isomorphic subtrees. Thus, they can be combined into a single
subtree. In addition. from the node marked “+”. one arrives at the
same subtree when descending to the left or right (/e.. independently of
the value of #). hence this vertex does not affect the value of the function
and may be eliminated. The result of applying the Reduce operation
to the tree of of figure 2.1 is depicted in depicted in figure 2.2. Note
the significant reduction in the number of vertices. resulting essentially
from redundancy in the truth table of the function.

The canonical OBDDs are a subclass of DAGs (directed acyclic
graphs) where each leaf is labeled by 0 or 1. and each non-leaf is labeled
by a variable. [t is most convenient to define this class inductively. by
building large DAGs from smaller ones. For this reason. we will number
the variables from the bottom up.” In the sequel. the term dimension
will be used to denote the highest variable index occurring in a DAG.

"Untortunately, this is the opposite of the numbering adopted by Bryant. but 1t
makes the proots clearer.

2.3. SYMBOLIC ('TL MODEL CHECKING 43

Figure 2.2: Ordered Binary Decision Diagram

We will simultaneously define the class of DAGs which are canonical
OBDDs and the tfunctions they denote, by induction on the dimension:

Definition 1 Let V' be an n-tuple (vy,vq,...,v,) of variables. The
class OBDD(V') consists of the terminals 0 and 1. and a collection of
triples in S x OBDD(S) x OBDD(S) called non-terminals. With each
¢lement p of OBDD(V'). we ussociate a dimension dp,. where 0 < d, <
n. and a Boolean function f, : B — B. The cluss OBDD(S) is the
least such that. for all v & {0.1}":

[.0e OBDDIVY). dy =0, and fy(xr) =1,
21 0BDDV). dy =1t and [i{r) =1,

S if Uand h are distinet clements of OBDD(V). where d) < 1 < n
and dy < 1. then the triple r = (v, [h) is also in OBDD(V).
d, =i and

[fle) ife =0

/r(l) = lfh(‘lj) [j I = |

With regard to canonicity. the salient aspects of the above definition
are that a triple (v, (. h) is a canonical OBDD ounlyv it [and / are
distinet and 1 s greater than the dimensions of / and A (the vartable

44 CHAPTER 2. SYMBOLIC MODEL CHECKING

ordering requirement).!® One important consequence of this is that f;,
the function represented by a DAG p. does not depend on any variables
of index greater than d:

Lemma 1 for all p € OBDD(VY), for all d, < i < n. fy(v; — 0) =
fp(Uy — l).

Proof. By induction over d,. We assume the statement of the
theorem holds for all ¢ such that ¢, < d,. The terminal cases. p = 0
and p = | are trivial. For the non-terminal case. let p = (v;.[. h). where
J < t. Now consider two cases. v; = 0 and v; = 1. In the first case.
folvi = 0) = filvi — 0) and fy(v; — 1) = fi(v;i « 1). These are equal
by inductive hypothesis. since d; < i. The other case. v, = | is similar,
with f, for f;. O

It is not difficult to show that OBDDs canonically represent the
Boolean functions. That is, each Boolean function is represented by
exactly one OBDD. We show first that there are no two distinct OB-
DDs representing the same function, and second, that every Boolean
function is represented by some OBDD. The following theorem is es-
sentially due to Bryant [Bry86], although the formalization is different,
and as a result. it is hoped, the proof is substantially simpler.

Theorem 5 (Bryant) [f p and p' are elements of OBDD(V). then
fp = fo implies p=p/

Proof. By simultaneous induction over d, and .. We assume the
statement of the theorem holds for all ¢ and ¢'. where d, < d, and
dy < dy. Suppose that f, = f,

Consider tirst the case where d, = d,. Either p and ¢ are both
terminals. (in which case p = p’ = 0 or p = p’ = 1) or they are both
non-terminals. p = (v;. [Lh) and p’ = (v,,l'. h'). For non-terminals. we

*"There is an alternative formulation of OBDDs due to (larke [KC'90] which does
not require { and A to be distinct, but requires that i = d;+1 = dj, + 1. In this case.
the OBDD for a function f is exactly the minimal DFA recognizing the language
{re{n.1}"] f(z) = 1}. Thinking of OBDDs as minimal DFAs can provide useful
insights into the complexity of representing certain classes of functions as UBDDs.

2.3. SYMBOLIC C'TL MODEL CHECKING 13

have f; = f(vi —) = fylry — 0) = fo. and similarly f, = f,(vi —
1) = fp(vi — 1) = fi. Hence. by induction. { = /" and h = /'. s0
p=p.

Second. consider the case where d, > d,. It follows that p is a
non-terminal (v;.[. k). Further. by the previous lemma. f,(v; « 0) =
fole, — 1). Therefore. f,(v, — 0) = fy(v, «— 1), so fi = fu. By
induction. then. [= h. This is a contradiction. however, since if ! and
h are not distinct. then p is not in OBDD(V').

A symmetric argun:ent applies to the case d, < dy. O

Theorem 6 Given a function f: B* — B. there exists p € OBDD(V)
such that f, = f.

Proof. By induction on i. the greatest number such that f(v;, —
0) # f(vi « 1). By inductive hypothesis, there exist ¢ and r in
OBDD(V) such that f, = f(v, «— 0) and f, = f(vi « 1). Further. ¢
and r are distinct. since f(v; « 0) # f(v; — 1). Thus. let p = (v;.q.r).
()

Because each function is represented by a unique OBDD. testing
two OBDDs for functional equality can be accomplished in constant
time. This property of OBDDs is usetul for determining when a fixed
point has been reached in the standard fixed point algorithm.

The Apply algorithm

Brvant describes an algorithm called Apply. which applies an arbitrary
Boolean operation e to two OBDDs. The operation e can be any of
the 16 Boolean functions of two variables - Ipply computes the natu-
ral extension of e to two Boolean functions. (iiven two non-terminal
OBDDs p and ¢. the Apply algorithm breaks the problem of computing
r = peqinto two subproblems on the children of p and ¢.

Take first the case where d, = d,. Let p = (v, [, h,) and ¢ =
(v g hy). Ttis easily shown that

o rir, —0)=pir, —DNegr, —0)=/,0l and

16 CHAPTER 2. SYMBOLIC MODEL CHECKING

o riv, —l)=plvi —1)eqg(v; — 1) =h,eh,

Thus. we create two subproblems [= [, e/, and h = h, e h,. On
the other hand. suppose that p = (v;,[;,h,) and ¢ = (v,.[,, hy), where
¢ > J. In this case. ¢(v; — 0) = g(v; — 1) = ¢. So.

o riv; —0)=p(r; —0)eqg=1{,0qand
o (v, —l)=plv, = 1)eg=hyeq.

Therefore. we create two subproblems [= [, ¢ ¢ and h = h, e q. The
remaining case. ¢ < j, is symmetric.

The subprobiems are solved recursively to obtain [= r(v; — 0) and
h = r(v, — 1). From these two cofactors. we can derive r. If [and
h are equal. then r = h = [. If they are distinct, then r = (v;, . h).
Finally. if p and ¢ are both terminals. Apply simply uses the truth table
for e.

Since each subproblem of dimension d can generate two subproblems
of dimension d — 1, it might seem that this algorithm is exponential. It
can be made polynomial. however. by applying dynamic programming.
Notice that each subproblem is determined by a pair of OBDDs p’ and
¢’ which are descendants of p and ¢ respectively. Hence, the maximum
number of distinct subproblems is the product of the size of p and the
size of q. By keeping a hash table of triples (p.q.r), we can reduce
the number of recursive calls to |p| - |¢|. Brvant shows that this upper
bound is tight. since there exist functions p and ¢ for which the size of
ris |pl - {ql.

The (‘ompose algorithm

Bryant also gives an algorithm called C'ompose which computes p(v; —
q). where p and ¢ are OBDDs. and v, is a variable. The algorithm is
easilv adapted for simultaneous substitution of a vector of variables.
Hence. given that

Jvip = ple, — 0)V plo, — 1). (2.13)

the compose procedure conld be used to implement both the variable
substitution operation p(V — 1) and the existential quantification

2.3. SYMBOLIC C'TL MODEL CHECKING 17

operation 3V’.p needed for symbolic modei checking. On the other
hand. a much more efficient procedure can be obtained by combining
the quantification and conjunction operations in the expression for £ .Xp
into a single OBDD operation computing 3V7.(p A ¢). Applving the
quantifiers in a bottom-up fashion as the conjunction subproblems are
solved results in a substantial reduction in the size of the intermediate
results by reducing the number of variables.

The AndErxists algorithm

This algorithm. which we will call AndEzrists is basically a modification
of Apply. Let r be the OBDD representing the function IV7.(p A ¢).
We compute r by generating subproblems / and & in the same manner
as if using the Apply algorithm for ¢ = A. When the results of the
subproblems are obtained. if the leading variable »; is a component of
V7. the result is r = [V h (see equation 2.18). This result is obtained
by calling Apply with ¢ = V. On the other hand. if v; does not occur
in V. then the result is the same as for Apply: if { = h.thenr =1 = h,
else r = (v;, L, h).

The motivation for this algorithm is to avoid producing the entire
OBDUD for p A g. which has 2n variables. where n is the number of state
variables of the model. This is done by applying existential quantifi-
cation to the results of subproblems as soon as thev become available,
vielding a result with only n variables. Empirically. this provides a
substantial savings in space.

As in the Apply algorithm. a table of triples (p.q.r) is used to avoid
resolving previously computed subproblems. The maximum size of this
table is Ip] - [¢|. However. unlike in the Apply algorithm. the recursive
calls cannot be executed in constant time. This is because each call
may require a V operation to be performed. .\t present. the author
is unaware of a bound on the complexity of AndErists better than
O(|p]- lq] - 2#™). which is simply the number of V problems to be solved
(1pl-|q} in the worst case) times the square of the largest possible OBDD
size. 2%, In practice. this number of operations has not heen observed.
so one might conjecture that there is a tighter bound. It seems unlikely
that a polynomial bound will be found. however. since it is easily shown
that if vector existential quantification on OBDDs can be computed in

43 CHAPTER 2. SYMBOLIC MODEL CHECKING

0 -ty ity -1t
Figure 2.3: Variable ordering for 3-SAT reduction

polvnomial time, then P = NP.

The proof of this is by reduction from 3-SAT. as follows: Let f =
ty Ata A+t be a 3-SAT formula, that is. ¢t; = (£; V i V =,), where z;,
y: and z, are positive or negative literals. The OBDD representation of
each ¢, has no more than 3 non-terminals. Now introduce new variables

V' = (v].0),....0;). corresponding to the terms of f. and let
=V (=t.Avin A\)
1<i<k 1<)<

For a suitable variable ordering, the OBDD representing f’ has no more
than & non-terminals (see figure 2.3). hence can be built in polvnomial
time. The tormula [is satisfiable iff 3V'. f" # 1. Thus. if I3V, f” can be
computed in polvnomial time, then P = NP.

As an aside. it is not difficult (though a bit tedious) to show that the
symbolic C'TL model checking problem is PSPACE-complete. To show
PSPACE-hardness. one starts with a polyvnomial space bounded Turing
machine. introduces a sufficient number of Boolean variables to encode
the entire tape. plus the pointer and the finite control. then expresses
the transition relation of the entire system as a QBF formula. To show
that the problem is in PSPACE. one can show that the problem can
be reduced to satisfiability of a QBF formula of polynomial size. using
the “iterative squaring” technique of Burch. et al. [BCM*90]. Details
are left to the reader.

2.4 EXAMPLES 49

2.4 Examples

Although the worst case complexity of symbolic model checking is high
{using OBDDs or other Boolean function representations). in practice
the worst case complexity is rarely achieved, and the symbolic technique
can in some cases be dramatically more efficient than previous methods.
As an illustration of this. let’s look at two hardware examples - a
svnchronous fair bus arbiter. and an asvnchronous distributed mutual
exclusion ring circuit (the one studied by David Dill in his thesis [Dil38]
and designed by Alain Martin [Mar35)).

2.4.1 Synchronous state machines

For a svnchronous finite state machine. the transition relation can be
given as a conjunction of Boolean formulas. each determining the new
state of one register as a function of its old state and the inputs. Let
V = {uv1,va,....v.} be a set of Boolean variables representing the state
of the registers in the circuit. and let W = {wy, ws,....wn} be a set
of variables representing the values of the inputs to the circuit. For all
i =1...n, let f,[V.W] define the value of register ¢ in the next state,
in terms of V' and W. The transition relation of the state machine can
he expressed as a Boolean formula in the following form:

R= A R. where R = (| = f[V.W]). (2.19)
=1

[n general. for models of svnchronous systems. the transition relation
is a conjunction of formulas representing the individual components
of the svstem. since transitions of the components are simultaneous.
The outputs of the state machine can be given as Boolean functions of
the inputs and registers. These functions can be substituted for atomic
propositions in ('TL formulas. so there is no need to introduce variables
to represent the ontputs.

As an example of a synchronons state machine. we will consider
a svnchronous bus arbiter cirenit. The purpose of the bus arbiter is
to grant access on each clock cvcle to a single client among a number
ol clients contending tor the use of a bus (or other resource). The

50 CHAPTER 2. SYMBOLIC MODEL CHECKING

token out ovemq'e in grant out
w
reqin > ' ack out
T 1/
1 A
token in override out grantin

[igure 2.4: ('ell of synchronous arbiter circuit

inputs to the circuit are a set of request signals reqy ... req._,. and the
outputs are a set of acknowledge signals acky ... acki—,. Normally, the
arbiter asserts the acknowledge signal of the requesting client with the
lowest index. However. as requests become more frequent. the arbiter is
designed to fall back on a round robin scheme, so that every requester is
eventually acknowledged. This is done by circulating a token in a ring
of arbiter cells. with one cell per client. The token moves once every
clock cycle. If a given client’s request persists for the time it takes for
the token to make a complete circuit. that client is granted immediate
access to the bus.

The basic cell of the arbiter is depicted in figure 2.4.1. This cell
is repeated A times. as shown in figure 2.1.1. Each cell has a request
input and an acknowledge output. The grant output of cell / is passed
to cell + + |. and indicates that no clients of index less than or equal
to ¢ are requesting. Hence. a cell may assert its acknowledge output
if its grant input is asserted. Each cell has a register T which stores
a one when the token is present. The T registers form a circular shift
register which shifts up one place each clock cycle. Each cell also has a
register IV (for “waiting™) which is set to vne when the request input
is asserted and the token is present. The register remains set while the
request persists. until the token returns. At this time. the cell’s override
and acknowledge outputs are asserted. The override ..gnal propagates

24. EXAMPLES 31

0
‘ -.tl IIIIII I ---------
LIS go'i
-1 —_h..}% oo 9?1..5 ack
Eo UL gio "E
4, T it o gi o 3K
;'to"'"bi """ gio' 'E
reqo —-h}i o]‘i ___§;;—-> acko

Figure 2.5: Configuration of the synchronous arbiter circuit

through the cells below. negating the grant input of cell 0, and thus
preventing any other cells from acknowledging at the same time. The
circuit is initialized so that all of the W registers are reset and exactly
one T register is set.

The desired properties of the arbiter circuit are:

1. No two acknowledge outputs are asserted simultaneously
2. Every persistent request is eventually acknowledged
3. \cknowledge is not asserted without request
Expressed in C'TL. thev are:
Lo Ay, AG-(ack, A ack))
2. A\ AGAF(req, = ack,)
3. A AG(ack, = req,)

Using the svmbolic ("TL model checking procedure. we can deter-
mine whether the design has these properties. for a given number of

52 CHAPTER 2. SYMBOLIC MODEL CHECKING

cells. Figure 2.6 plots the performance of the symbolic model check-
ing procedure for this example in terms of several measures: the size
of the transition relation in OBDD nodes. the total run time (on a
Sun3. running an implementation in the C' language), and the maxi-
mum number of OBDD nodes used at any given time.'! We observe
that as the number of cells in the circuit increases. the size of the tran-
sition relation increases linearly (in section 2.5. we will prove a theorem
that shows why this is the case). The execution time is well fit by a
quadratic curve. The number of reachable states. however. explodes
exponentially (note the logarithmic scale on the reachable states axis).

To obtain polynomial performance for this example. it was necessary
to add a wrinkle to the symbolic model checking algorithm. In the first
experiment it was found that although most of the specification was
checked quickly. the time required to check property 2 for cell 0 doubled
each time a cell was added. The reason for this is rather remarkable.
Consider a function called Rotate. which returns true for a pair of n
bit binary numbers when one number can be obtained from the other
by a rotation of j bits. There is no variable ordering which yields an
eficient OBDD for this function for all j.!? In fact. a very similar
function occurs in computing the set of states satisfying the formula
AF(req, = acke), where the two binary numbers are given by the
W and T registers respectively. Note that. for cell 0. request implies
acknowledge exactly when no other cell has both W and T registers
set. The T registers rotate once per clock cycle. Thus. req, = acky is
necessarily true j steps in the future exactly when there is no other cell
¢ for which W, A Ti_,moax- The OBDD representing this set of states
grows exponentially in the number of cells.

This illustrates a fairly general phenomenon: circuits tend to be
“well behaved™ in the part of their state space which is reachable from
the initial state. but not elsewhere. In the case of the svnchronous
arbiter. only states with one T register set are reachable. However.

"I'The latter number should be regarded as being accurate only to within a factor
of two. since the garbage collector in the implementation scavenges for unreferenced
nodes only when the number of nodes doubles.

2This can be shown using the technique of (Bry9l]. It is sufficient that for
any variable order there is some rotation such that when the order is cut in half,
information proportional to n must be passed from one half to the other.

2.4. EXANIPLES 33
m12
b
§10'
(/5]
8-
6-
4F
2-
0 4 5 ¢ 7 8 9 10 11

Number of Celis

‘“1x1o“
1+
g

1x10*

1x10°F

hable
-t
X x
S 3
L 1

R
b
X
-
o

v
L§

1)(1 02 I] r Il 2
0123 789101112
Number of Cells
@ 2500 [o
§ 000}
o) 2 ——o Total 0OBDD nodes ygseg ©
§ 1500 F *——e Transition reiation
1000 f
500+

0123456789101112
Number of Cells

Figure 2 6. Performance - svichronoyg arbiter eXxample,

34 CHAPTER 2. SYMBOLIC MODEL CHECKING

the symbolic model checking technique considers all states. including
states with multiple tokens. A\ good solution to this problem in general
is first to compute the set of reachable states. and then to restrict all
of computations of the ('T'L model checking algorithm to those states.
Since the reachable states are closed under the transition relation. this
has no effect on the truth value obtained for formulas at the initial
state. In particular, this solves the problem of the bus arbiter circuit.
since in its reachable state space, the T registers cannot represent an
arbitrary binarv number. :

The set of reachable states is the least fixed point of

(Y] =TV R(Y)

where [15 the set of initial states. Applying the standard fixed point
algorithm in this case effectively vields a forward breadth first search of
the state space. By computing the reachable states first and then using
this set to restrict the ('TL model checking algorithm. we obtain the
polynomial run time results described above. This technique is also
used for other experiments described in the sequel. unless otherwise
noted.

2.4.2 Asynchronous state machines

In an asynchronous state machine. there is no global clock to which
all state changes are synchronized. This makes designing correct asyn-
chronous circuits considerably more challenging than designing correct
svnchronous circuits. We will consider two plausible models of asvn-
chronous state machines. In the first. which we will call the simulta-
neous model, any or all state variables mav change state in a given
transition. LEach state component makes an independent and non-
deterministic choice regarding whether to change value or not. In the
second model. which we will call the interleaving model. only one state
component changes value in a given transition. The choice of which
component changes value is non-deterministic.!® In cither model. we

A discussion of which state machine model is more suitable for circuit design
is heyond the scope of this work. In general. conditions would have to be imposed
on either model in order to make it implementable in a given design style. For
disenssion of asynchronous design techniques. see [MB5Y, Seis0b].

2.4. EXAMPLES 33

consider an asynchronous state machine composed of n gates. We will
use state variable v; to stand for the output of gate i. and f,[V.W] to
represent the function computed by gate : (where V' is the set of state
variables. and W the set of inputs).

In the simultaneous model. the transition relation can be repre-
sented by a formula in the form:

R = /\ R:. where R, = (¢! < VLWV (v = vi). (2.20)

1<ikn

For any transition and any state variable v;, either the new value of
v, is determined by f,[V.W]. or it is the same as the old value. Note
that this differs trom the svnchronous model (2.19) in which every state
variable is reevaluated at every transition.

In the interleaving model. the transition relation can be represented
by a formula in the form:

\/ R, where R, = (v & fi[V.W])A (A u(v, &= v))) (2.:21)

In any transition, for some state variable v;, the new value of v; is
determined by f,[V,W], and the remaining variables keep their old
value. Note that in this case. the transition relation is represented
by a disjunction of component relations rather than a conjunction.

[n general. for models of parallel processes whose actions interleave
arbitrarily. the transition relation is disjunctive. If this is the case. we
can make an easy optimization in the symbolic model checking tech-
nigue: we observe that the set of states reachable by one step ot the
svstem is the union of the sets of states reachable by one step of each
individual component. This is reflected in the fact that existential
quantification distributes over disjunction. Thus:

EXp = 3V 0V RIA PV — 1))

t

VAV (R APV — V)

"sing this equality. we can avoid computing the transition relation of
the svstem and instead use only the transition relations of the indi-

36 (CHAPTER 2. SYMBOLIC MODEL CHECKING

ua <
c
ur & rr
ME c
Ir &— |
ra
c
la

Figure 2.7: One cell of the DME circuit

vidual processes. This technique is called early quantification'* - by
rearranging the computations. we apply quantification before the logi-
cal disjunction operation. Heuristically, quantification tends to reduce
OBDD size. since it reduces the number of variables. Hence. the size
of the intermediate results is usually reduced (though the final resuilt is
the same).

Our example of an asynchronous state machine is the distributed
mutual exclusion (DME) circuit of Alain Martin [Mar35]. It is a speed-
independent circuit {Sei80b] and makes use of special two-way mutual
exclusion circuits as components. Figure 2.7 is a diagram of a single cell
of the distributed mutual-exclusion ring. The circuit works by passing
a token around the ring, via the request and acknowledge signals Ir
and la on the left and rr and ra on the right. A\ user of the DME gains
exclusive access to the resource via the request and acknowledge signals
ur and ua.

The specifications of the DME circuit are as follows:
L. No two users are acknowledged simultaneously.
2. An acknowledgment is not output without a request.

3. An acknowledgment is not removed while a request persists.

YWThe AndErnists algorithm of section 2.3.1. which combines conjunction and
quantification in a bottom-up manner i1s also an »~xample of early quantification.

2.4. EXAMPLES

-3

ot

4. All requests are eventually acknowledged.

We will consider only the first specification. regarding mutual exclusion.
The others are easily formulated in CTL, although the last requires the
use of fairness constraints (see section 2.6.1) to guarantee that all gate
delays are finite. The formalization of the mutual exclusion specifica-
tion is

/\ AG-(ua; A ua;)

£

Now let’s look at the performance of the symbolic model checking
algorithm in checking this formula. for both a simultaneous and an
interleaving model of the circuit. For the interleaving model. we use
the early quantification technique. Figure 2.8 plots the relative per-
formance for the simultaneous model (method 1) and the interleaving
model (method 2). Part (a) shows the run time as a function of the
number of DME cells. part (b) shows the total storage used (measured
in OBDD nodes) and part {c) shows the number of nodes used to rep-
resent the transition relation. For the moment, disregard the curves for
method 3. The experiment was run for up to 7 cells of the simultaneous
model (limited by space) and up to 10 cells of the interleaving model
(limited by time). Part (b) of the figure shows the substantial space
advantage of the interleaving model. and from part (c), we can see that
most of the difference is accounted for by the savings in representing the
transition relation using early quantification. In both cases. the space
used 1s linear in the number of cells. However. we note that the increase
in run time appears to be cubic for the simultaneous model. but quartic
for the interleaving model. It would seem that if enough storage were
available to continue the curve for method 1. the two curves would meet
in the neighborhood of 10 cells.

The different asymptotic performance for the simultaneous and in-
terleaving models can be understood by looking at the OBDDs that
occur in the fixed point iterations computing the reachable states. Fig-
ure 2.9 plots the size of the largest such OBDD for each method. We
can see clearly that the size is increasing linearlv for the simultane-
ous model. but quadratically for the interleaving model. This is a
phenomenon which occurs generallv when comparing simultaneous e~
interleaving models. It can be nnderstood by considering a very simple

38 CHAPTER 2. SYMBOLIC MODEL CHECKING

system composed of n processes. each with states 0 and 1. and each
alternating non-deterministically between these two states. [f we start
the svstem with all processes in state 0, what do we observe after k
steps? In the simultaneous case. after one step. all possible states are
reachable. [n the interleaving case. however, after k steps. all global
states with at most & I’s are reachable. This is a symmetric function.
As Bryant noted [Brv36]. all symmetric tunctions can be represented by
a quadratic size OBDDs. The symmetry results from the fact that in
an interleaving model. exactly one state component changes in a given
transition. and the choice is arbitrary. In general. after & steps of such
a model. the number of steps taken by each state component sums to k.
Hence. in the set of states reachable after k steps, there is an induced
correlation between the states of otherwise independent processes.

The simultaneous model appears to be inferior to the interleaving
model from a symbolic model checking point of view. owing to the large
amount of space required to represent the transition relation. Most
of this. however. can be attributed to a phenomenon we observed in
the previous example: systems tend to be well behaved only in their
reachable state space. In the symbolic model checking technique, we
represent the transition relation over the entire state space. Although
representing only the reachable transitions might be more efficient, we
seem to be caught in Catch 22: we need to represent the transition
relation to compute the set of reachable states. We can avoid this
problem by incrementally computing only as much of the transition
relation as is necessary to compute the next iteration of the fixed point
algorithm. Recall that the reachable state set is the least tixed point of
(Y] = [V R(Y). By rearranging the fixed point computation slightly.
we only need represent R correctly for those transitions (.r.y). where x
15 on the “frontier™ of the search:

rtl(false) = r'(false) v R(7(falsej)
= r'(false) V R(r'(false) — r*~'(false))

At each iteration. we can reevaluate the formula 2 over the set of states
T'(false) — 7*~!(false). This can be done by restricting each subformula
using either the logical and or using the Restrict operator of Coud-
ert. Madre and Berthet (see section 2.8). This results in a sequence

2.4, EXAMPLES 59

of approximations to the transition relation which are substantially
more compact than the complete transition relation. although we must
reevaluate R at each iteration. rather that evaluating it once at the
beginning. We will call this method 3.

I[n part (a) of figure 2.8. we see that the time used by this method.
while still cubic. is a substantial improvement over the previous method
for the simultaneous model (method 1). More importantly, the space
used is dramatically improved. allowing a model with a larger number
of cells to be checked. The method overtakes the interleaving model in
run time at about 3 cells. owing to its better asvmptotic performance.

Figure 2.10 plots ihe number reachable states as a function of the
number of cells (the numbers are indistinguishable for the two models).
The number of reachable states grows exponentially in the number
of cells. though not as rapidly as the total number of states. which
is 28" The key point is that for all three methods. the space and
time necessary for the symbolic model checking method is polynomial
in the number of cells. Thus. the state explosion problem has been
avoided. The overall time complexity of O(n®) for the simultaneous
model derives from three factors: a linear increase in the transition
relation OBDD. a linear increase in the state set OBDDs obtained
in the fixed point iterations. and a linear increase in the number of
iterations. For the interleaving model. the quadratic increase in the
state set OBDDs results in an overall O(n') time complexity. On the
other hand. the number of reachable states increases roughly a tactor
of ten with each added cell.

[t 1s not immediately clear that either the interleaving or simulta-
neous model is preferable in general. Interleaving models seem to be
better when the number of asynchronous processes is small. and simul-
taneous when the number is large. The cache consistency protocol of
chapter 11s an example of a large svstem with a fairly small number of
complex asynchronous processes. This is an appropriate application of
an interleaving model.

The polynomial performance of the symbolic model checking algo-
rithm. in spite of the exponential increase in states. makes it possible to
analyze fairly large instantiations of the two example circuits (the sva-
chronous arbiter and the DME circuit). It should be possible to verify
these and stmilat circuits for any reasonable fixed number of cells. Thas

60

(h)

()

25000

L]

20000

Seconds

15000

10000

5000

0

@ 900000
Q800000
; 700000
2600000
O 500000
400000
300000
200000
100000

0

500000

400000

OBDD nodes

300000

200000

100000

Figure

CHAPTER 2. SYMBOLIC MODEL CHECKING

o—o0 Method 1
—e Method 2
o——a Method 3

L ' L L L

1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

o——o Total, Method 1 o)
o——e Total, Method 2
- o——o Total, Method 3

1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

o——o Transition relation. Method 1
o——e Transition relation, Method 2
a—a Transition reiation, Method 3

I S S W~ W —~ W~ = = = e ™ MY
1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

2.3: Performance for DME circuit example

2.4. EXAMPLES 61

@ 35000
230000
§ 25000
O 20000
15000
10000 [
5000

+———e Reached state set, Method 2
B——a Reached state set, Methods 1 and 3

L]

L N L A —t

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of Cells

Figure 2.9: State set size for DME circuit example

» 1x10°[
% 1x10"
§1x1o“
S 1x10"°
1x10°
1x10°
1x10’
1x10°
1x10°
1x10'F

0 1 2 3 4 5

T T T ¥

Reacha

T 7 1T I

6

7 8 9 10 11 12
Number of Cells

Figure 2.10: Reachable states tor DME circunit example

62 CHAPTER 2. SYMBOLIC MODEL CHECKING

begs the question - how many cells do we need to analyze to be guar-
anteed that the design is correct for any number of cells? Intuitively,
for sufficiently large n. a sequence of n + | cells should be equivalent
in some sense to a sequence of n cells. But in what sense equivalent?
This problem is dealt with in chapter 5. where we consider induction
over processes.

2.5 Graph width and OBDDs

In this section. we consider the asvmptotic growth of OBDDs repre-
senting certain topological classes of circuits. This analysis explains
some of the performance results of the previous section.

In 1989. Berman proved a bound on the OBDD size needed to rep-
resent circuits of bounded width. A circuit has bounded width if its
elements can be arranged in a linear order such that any cut through
the order crosses at most a bounded number of wires w. called the width
of the circuit. There exists a variable ordering such that the OBDD
size is bounded by n2¥, where n is the number of primary inputs of the
circuit. This result applies only if the order is “topological”. meaning
essentially that the direction of all the wires follows the ordering. Here.
this result is generalized. to show that if wy bounds the number wires
through any cut in the forward direction. and w, bounds the number
in the reverse direction. then the OBDD size is bounded by n2vs?™"
For the case where w. = (. this is the same as Berman’s result. Using
this result. we can linearlv bound the OBDD representation for the
transition relation of circuits like the arbiter and the DME ring. which
have linear arrangements with a bounded number of wires through any
CTOSSS SeCLIoN.

Fujita states that tree circuits using only AND. OR and XOR gates
have linearly bounded QOBDD representations [F MK90]. Here. we show
that a more general class of circuits with bounded “tree width™ and
arbitrarv function elements have polvnomially bounded OBDDs. The
essence of the argument is to show that these cirenits can be arranged
in a linear order with a width that is logarithmic in the number of
sates. [his vields a bound on the OBDD <ize which is polvnomial
the number of gates,

2.5. GRAPH WIDTH AND 0OBDDS 63

2.5.1 Bounded width circuits

Let L = ((G. <) be a linear order on the gates of a circuit. We classify
the primary inputs and outputs of the circuit as special instances of
gates in order to simplify the definitions. and assume that the primary
output is at the top of the order. Given an order L. we will say that
the forward cross section of the circuit at gate ¢ is the set of wires
connected to an output of some gate ¢, and an input of some gate ¢,
such that ¢y < ¢ and ¢ < ¢2. The reverse cross section is the set of
wires connected to an output of some gate ¢, and an input of some gate
g2 such that ¢ < g and ¢ < g,. We assume that no wire is connected
to the outputs of two distinct gates. so these two sets are disjoint. We
also assume that there are no cvcles in the circuit. to insure that the
circuit computes a function. The order L is said to be topological when
all of the reverse cross sections are empty.

The forward width of the circuit under order L. denoted wy. is the
maximum size of the torward cross section at any gate ¢. Similarly, the
reverse width of the circuit nnder order L, denoted w, is the maximum
size of the reverse cross section at any gate ¢.

The cross section of an OBDD at level i is the set of nodes labeled
with variable v;. Note that in this section, we will number the variables
of the OBDD from the top down. since this makes the proofs simpler.
The width w, of an OBDD p is the maximum size of any cross section
of p. The size of an OBDD is the sum of the sizes of its cross sections.
Thus. the OBDD size if bounded by n - w,. where n is the number of
variables.

It is easily shown that the size of the cross section of an OBDD at
level ¢ 1s the number of distinct functions

forlve . tn) = foleoooo T Lo

which depend on r,. where r = (ry...... r,-1) 15 a Boolean vector and |,
is the tunction represented by p. This observation leads to the following
theorem bounding the size of an OBDD in terms of the forward and
reverse widths of the cirenit it represents:

Theorem 7 [f « ciremit computing function [has forward width 1o,
and reverse width . for some linear order L. then there is an OBDD

64 CHAPTER 2. SYMBOLIC MODEL CHECKING

output

T

Figure 2.11: Proof of bounded width theorem

p representing function f of size bounded by n2*1*"", where n is the
number of inputs of the circuit.

Proof. Associate the variables vy,...,v, of the OBDD with the
inputs of the circuit. such that for all : < j, v; < v;. We can bound
the size of the ith cross section of the resulting OBDD as follows. Let
o= (Iyj...... r._1) be a Boolean vector. Split the circuit in half by
choosing any gate ¢ such that v,_, < ¢ < v,. letting }" be the forward
cross section at g and Z the reverse cross section. This situation is
depicted in figure 2.11. For any given value of r. } is a function of
Z. and this function determines f.(r,.....). The number of Boolean
functions with |[Z] inputs and Y| outputs is VI (1o see this. count
the number of entries in the truth table). This bounds the total number
of distinct tunctions f,. which in turn bounds the width of the OBDD
representing f at level . We know that |Y| <y and |Z] < w,. Thus.
the overall OBDD size is bounded by n -2%s2"" . O

This bonnd s linear in the number of inputs. exponential in the
forward width and doubly exponential in the reverse width. The double
exponential anpears to be necessary. This can be shown using the

2.5. GRAPH WIDTH AND OBDDS 63

*hidden weighted bit” function of [Bry9l] as a counterexample. This
circuit can be ordered in such a way that between any two inputs there
is a cross section with O(log, n) wires in each direction, yet there is
an exponential lower bound on its OBDD size. If we could bound the
OBDD size with a single exponential in both the forward and reverse
widths, the OBDD size would be O(n25'%82") = O(n**!) where k is a
constant.

The theorem is concerned with a single output of a combinational
circuit, but it can also be applied to the transition relation of a sequen-
tial circuit. To do this. we simply transform the sequential circuit into
a combinational circuit which computes the transition relation ot the
sequential circuit. This is done by adding a pair of inputs v; and v]
to represent the old and new values of each state component. Since
the transition relation of the circuit is the conjunction of the transition
relations of its components. we can do this while increasing the width
of the circuit by only one wire in the forward direction as depicted in
figure 2.12. Thus, for bounded width sequential circuits {even with
wires in both directions). the size of the OBDD representing the tran-
sition relation is linear in n; + n,, where n; is the number of inputs and
ns is the number of state components. The synchronous arbiter cir-
cuit and the DME circuit of the previous section provide experimental
confirmation of this.

We have shown for a certain structural class of circuits that the
representation of the transition relation is linearly bounded in the size
of the circuit. We should note that in the symbolic model checking
algorithm. we also nse OBDDs to represent the set of states labeled with
a given ('TL formula. Unfortunately. we cannot expect to polvnomially
bound the size of the OBDDs representing these sets based purely on
structural considerations. The simplest example of this is probably a
circuit that inputs a binary number. stores one copy of it. then seriallv
rotates the original by an arbitrary number of bits. This circuit has the
simplest striucture we might hope for that has any communication at
all between the components. vet there is no variable order which vields
a compact OBDD for the reachable state set of this circnt. sinee it
implements the rotate function. The same argument would apply to
a serial multiplier circuit. In general. if a circuit computes a function
serially wiich cannot be represented by a compact OBDD. then we

66 ('HAPTER 2. SYMBOLIC MODEL CHECKING

T

V1 —t T
v, —ot 1
1
\

V2 ——g 5
V2 —nt
V.

3
Vé —rt 7:3

Figure 2.12: Computing a conjunctive transition relation

cannot expect the symbolic model checking algorithm using OBDDs to
be efficient.

2.5.2 Bounded tree-width circuits

In the previous section. we considered the OBBD representation of
circuits whose gates can be arranged in a sequence with a bounded
number of wires in each cross section. Now we consider the slightly
more general class of circuits which can be can be arranged in a tree
with a bounded width property. This is not to say that the topology of
the circuit must be a tree: rather. it must be possible to lay a spanning
tree over the circuit in such a way that the width of the circuit across
any arc of the spanning tree is bounded. This notion of bounded tree-
width is defined as follows.

Let I' = ((7. <) be a tree order over the gates of a circuit. where
g < g ifl ¢ is a descendant of ¢. Let b be the branching degree of T' (ie..
the maximum number of children of anv gate). As betore. the forward
cross section at node g is the set of wires connecting an output of ¢

2.5. GRAPH WIDTH AND OBDDS 67

and an input of gy such that ¢, < ¢ and g < ¢o. Similarly, the reverse
cross section of T at node ¢ is the set of wires connecting an output of
¢1 and an input of ¢, such that g, < ¢ and ¢ < ¢;. The forward width
of the tree wy is the size of the largest forward cross section. while the
reverse width w, is the size of the largest reverse cross section.

For the moment. let us consider the case w, = 0. and let the width
w stand for the forward width:

Lemma 2 For any topological tree order T = (G. <), with width w and
branching degree b > 1. there is a topological linear order L = (G. <'),
with width w' < w(b — 1)log:|G].

Proof. By induction over |(7|. the number of gates. The base
case. |G| = 1. is trivial. \Assume the theorem holds for all circuits of
size less than |G|. Let ¢ be the root of the tree. and let G,..... G
be the subtrees of the root. where & < b. and |G| < --- < |Gi|. By
inductive hypothesis. there exist linear orders L; = (G, <;) of width
w; < wlb— Nlogy|Gil, for all 1 < i < k. Let L = (G,<’) be the
extension of these orders such that G, <’ --- <’ G; <’ g, as depicted in
figure 2.13. The width w' of L is bounded by maxi<i<k(wi + (k — i)w).
Therefore. for some :.

w' < ow (k= Dw
In the case k = i. we have
w < ek < eth = Dloga |Gl < wth — 1)logy |G
Otherwise. + < b and

!
iy

IN

wik =i+ (b—1)log, |G.])
wih — 1) log, (205F]67,)

(AN

Here. we note that [V, < (¥, <k|C)/ (k=7 +1) <G/ (k=14 1) 50

.

-

R = \
a
l l('|)

0w - wlh — l)l()g'2 (A 7
C—

68 CHAPTER 2. SYMBOLIC MODEL CHECKING

Gy
Figure 2.13: Arrangement of bounded width tree

We note that since ! > | and & < b. k — 1 < b— 1. Therefore 2:—:—; < 2.

k=1t
26=T "
imz1 < L. Therefore.

w' < w(b—1)log, |G|

Further. since : < k. bk — ¢+ 1> 2. Thus

The theorem says that from any topological tree order of width
w we can derive a linear order of width w' < w(b —)log, |(7]. Tt
follows by the previous theorem that the OBDD size is bonnded by
p2w et = loga 6T — | Geth =1 Dwhere nois the number of primary
inputs. [his bound is polynomial in the size of the circuit tor a fixed
width and branching factor.

Now we turn to the question of tree orders that are not topological
(te.. bounded tree-width circuits with both forward and reverse wires).
[n this case. a logarithmic bound on the width of the linear order L is
not sulfficient. because the OBDD size can be doubly exponential in the
number of e rerse wires.

We can still obtain a polvnomial bound in n. however. by converting
a tree ordered cirenit witl reverse wires into a functionally equivalent

2.5. GRAPH WIDTH AND OBDDS 69
tree ordered circuit with only forward wires:

Lemma 3 IfT = ((i. <) is « tree order over a circuit computing func-
tion f. with forward width w; and reverse width w,. then there s a
circuit computing | with topological tree order T' = ((v'. <) of forward
width 'y < w2

Proof. Consider [. a subtree rooted at gate h. letting Y be the
forward cross section at h. and Z the reverse cross section at h. Let
Nyooon he be the children of A. and let Yj..... Yo and Z,..... Ze be
their respective forward and reverse cross sections. This situation is
depicted in hgure 2.14. Let the output functions computed by H be

Y o= f(Z. Y. .. Y
and for I <: < k. let

7. = r(Z.Yi... Yy
}t = fz(Zx)

We show by induction over |H| that there exists a tree circuit H' of
forward width w/, < 2" and reverse width w, = 0. computing the
functions

fo=fla Y. bi). for o € {0. [}7]

Note that f, is simply row .« in the truth table for Y. Since there are

2170 possible values of . and f, has |Y| components. the number of

ontputs of H' is |y 2",
By inductive hyvpothesis. there exist circuits) for | < 0+ < k.
satisfving the width bound and computing the functions

o = [y for e & {0, l}‘in
Now. let A’ be a vate computing [, according 1o the following svstem

of equations:

rooo= o, fer b for bk

70 ('HAPTER 2. SYMBOLIC MODEL CHECKING

Figure 2.14: A non-topological tree order

Let H' be the tree ordered circuit obtained by taking A’ as the root.
and Hi..... H{ as the children of the root. The reverse width at the
root is 0. since f,. does not depend on Z. and the forward width at
the root is [¥]2/4!. Hence. using the inductive hypothesis. w’ = 0 and
wh < awp2*. 1f h is the root node of G. then H' computes the same
function as GG. O

This gives us the following theorem. bounding the OBDD size for
tree ordered circuits with both forward and reverse wires:

Theorem 8 If a circwitt (7 computing function [has forward width
wy and reverse width w, for some tree order T of branching degree
h > 1. then there is an OBDD representing function f of size bounded
hy niCier "m0~ Dehere nois the number of primary inputs of the circuit.

Proof. According to lemma 3. for any tree ordered circuit of
forward width wy and reverse width .. we can construct a topological
tree ordered cireuit of width w < 102" which computes the same
function. By lemma 2. this circuit has a topological linear order L of
width at most w’ < wih — D)logsi(7]. By theorem 7. there is an OBDD
for the cireuit of size bounded by

”.—)'u,’ - ”_lur(h—l)logz |65]

”.)u 20T (‘*—l)lug’_, e

2.6. MU-CALCULUS MODEL CHECKING 71

— Il!Gl'UlZwr(‘)-”

Hence. in the case of bounded tree width circuits (of a fixed branch-
ing degree), we also find that the OBDD size can be bounded polv-
nomially in the size of the circuit. In this case. the exponent of n is
related to both the width and the branching factor. Clearly, for this
bound to be of any practical interest. wy must be small. and w, must
be very small. Nonetheless. the theorem demonstrates a more general
topological class of circuits with asvmptotically compact OBDDs than
was previously known.

2.6 Mu-Calculus model checking

The Mu-Calculus [Par74] is a logic based on extremal fixed points that
is strictly more expressive than CTL,!> and can also express a variety
of properties of transition systems. such as reachable state sets. state
equivalence relations. and language containment between automata. A
symbolic model checking algorithm for this logic allows all of these
properties to be computed using OBDDs [BCM™*90].

The Mu-Calculus augments the ordinary predicate calculus in two
wayvs. First. 1t allows terms to stand for relations. If f is a formula
in which variables v and y are free. then f characterizes a relation -
the set of all pairs (.. y) satisfying f. This relation is denoted in the
Mu-Calculus by the term Aoy . f. Second. the Mu-Calculus allows us
to express least and greatest fixed points. If 7 is a term. and Y is a
relational (predicate) symbol. then 7 is said to be formally monotonic
m Y if ¥ oalwavs occurs nnder an even number of negations in 7. In
this case. r has least and greatest fixed points with respect to Y. which
are denoted pY. 7 and vY. 7. .\ fixed point of 7 with respect to Y is a
relation which vields itself when substituted for all free occurrences of
Yoinr.

“Emerson and Let [ELX6] gave a model checking algorithm for a somewhat differ-
ent version of the Mu-Caleulus. and showed that there are tormulas in this logie that
cannot be expressed i CTL. Hereo we nse the relational Mu-Cadenlus of Park [Paci 1]

CHAPTER 2. SYMBOLIC MODEL CHECKING

A structure in the Mu-Calculus consists of a set D (the domain). a
valuation o for the individual symbols {a.b,c....} and a valuation v for
the relational symbols {A.B.C....}. The valuations assign an element
from the domain to each individual symbol. and a set of n-tuples from
the domain to each relational symbol. The meaning of an n-arv term
T is a set of n-tuples which we will denote [0, v]. The 0-ary terms will
be called simply propositions. and denote truth values.

The terms of the Mu-Calculus are the least set such that:

L.

)

Ut

.

Every relational svmbol is a term.

[f 7 is an n-ary term and (vy..... v,) are individual svmbols. then
Ty ... ',) 1s a proposition.

[t 7 and 7, are n-ary terms. then so are -7 and (7, V 7,).

[f pis a proposition. and v is an individual symbol. then Jv. p is

a proposition.

If p is a proposition and (v,,....v,) are individual symbols. then
Avg, ... Un. P 1S an n-ary term.

If 7 is an n-ary term and Y is an n-ary relational symbol. where
7 is formally monotonic in Y. then pY. 7 and vY. r are n-ary
rerms.

The usual abreviations are used for A. =. V. ¢fc.

The semantics of Mu-Calculus terms are defined as follows:

l.

R(o.] = w(R). where R is a relational symbol.

Ty v)ooe] is true iff (o(ey). ofr,)) is in oo,
(=rifo.w] = D" = rlo.w]. (1, V m)]o.] = 7o, el U no.).
(3r. p)o.w] is true if for some r € D. plo(r — r). v is true.

(Neyoo. U p)[o.] is the set of n-tuples (.. r,) & D" such
that plofr, — r,).u] is true.

Y m)[ooe] where T is an n-ary term. is the least set 5 Z D

such that 5 = rlo (Y — 9] (vY. 7){o.] is the greatest such
.\'.

2.6. MU-CALCULUS MODEL CHECKING 3

2.6.1 Applications of the Mu-Calculus

The Mu-Calculus is quite expressive. as can be seen by the following
compendium of applications. To begin with, given a binary relation R.
the image of a set Q € D ria R is

R(Q) = \y. de. (R(x.y) A Q(x))
The set reachable from Q in any number of steps of R (including 0} is
R (Q) = pY. (QV R(Y))
The transitive (irreflexive) closure of the relation R is

R* = uY. [RV \a.z. Jy. (Y. y) AY(y.2))]

CTL and fairness constraints

The interpretation of the operators of CTL in a Kripke model (D. R. L)
can be characterized in the Mu-Calculus as follows:

EXp = Az. 3y (R(z.y)Aply))
EFp = uY. (pVvEXY)
EGp = vY. (pA EXY)

EiqlU p) = pY. (pVign EXY))

In addition to these standard operators. we can also characterize the
("TL operators under fairness constraints. \ fairness constraint in its
simplest form is a condition that is assumed to hold infinitely otten
along all computation paths. Such conditions can be used to entorce
fair scheduling of processes and access to resources. Thev are not di-
rectly expressible in ("TL. since the tense operators [and (i cannot
be directly combined. Instead. we restrict the path quantifiers of C'TL
to apply onlv to those paths along which each formula in a set " holds
infinitely often. To distinguish these constrained path quantitiers from
ordinary path quantifiers. we subscript them with €', Thus. A f. where
("is a set of CTL formulas and f is a linear formula. means that for
all paths. il cach formula of € s true infnitely often. then s tene.

T4 ('HAPTER 2. SYMBOLIC MODEL CHECKING

Similarly. the tormula E.f means that there exists a path such that
each formula of (' is true infinitely often and f is true. Here. we con-
sider only the C'TL operators with existential path quantifiers. since
the operators with universal quantifiers can be derived from these.
The formula E~Gp is true when there is some path in which p is
true in every state, and each element of (' is true infinitely often. Let

Y] =pAEX N\ E(Y I (Y Ac)).

ceC

We argue as follows that E-Gp is the greatest fixed point of r. First.
if Y is a tixed point. then every state in Y satisties p. and further. has
a nontrivial path remaining in Y which leads to a state satistving each
fairness constraint. Hence. a looping path can be constructed satisfying
each infinitely often without exiting Y. Thus ¥ C E-(/p. On the other
hand. suppose Y = E~Gp. Since every state in ¥ has a path touching
each fairness constraint infinitely. as does each state along that path. it
follows that every state in Y can reach every fairness constraint without
exiting Y. Thus Y C r{Y]. Therefore. F~Gp is the greatest fixed point
of 7. The set of states satisfying EcGp is expressed in the Mu-Calculus
as

vY . (pANEX N\ E(Y U (Y Ac)))
ceC

The remaining operators under fairness constraints can be characterized
in terms of £-(ip. as follows:

EeXp = EX(pAEo(i true)
EcFp = EF(pAE-(true)
Eetqg U p) = Elql (pN Ec(i true))

Emerson and Lei [EL36] give a characterization in the Mu-Calculus of
C'TL nnder a more general class of fairness constraints. Each constraint
in this scheme requires that one condition holds infinitely often or a
second condition holds finitelv often (for example. either acknowledge
holds tnfintrelv <fren. or request holds tinitely often).

26. MU-CALCULUS MODEL CHECKING

~1
ot

Simulation relations
Two states & and y of a Kripke structure are said to be bisimular it:

l. @ and y agree on the atomic propositions.

2. every successor of o is bisimular to a successor of y and

3. everv successor ot i is bisimular to a successor of .r.

Two states are bisimular if and only if thev satisfy the same set of
C"TL formulas [BCGSTL Ity u,. ... (i) are the atomic propositions.
then the bisimulation relation can be expressed in the Mu-Caleulus as
follows:

Bisim = vY. \eoy. N\ (wlr) = aly)

1<e<h
AVE (R Y = 3y Ry Y)Y A Y (' ')
AYy' . (Riy.y')y = 3 (R(e. L YAY (L ')

where we have. as usual. identified each atomic proposition with the
set of states in which 1t 15 true. There is also an asvmmetric notion of
~simulation we sav that a state r <imulates a state y if:

L.

rand y agree on The atomic propositions.

20 every suecessor ob s simmdated by a suceessor ol r.

If state o+ simulates state 4. then y satisties every formmla satistied by
ran a dialect of CTL called 7-CTLL which allows onlv universal path
quantifiers (GLY1TLY Testing bisimulation and simulation relations can
bhe used as a form of veriheation. or 1t can be used to test abstractions
nsed in compositional model cheeking techniques [CLNN9a, GLYU. The
~ame wdea can ecasily be extended to svstems with labeled transitions.

S faet, thas s also troe Be TR anextension of CTL whieh allows anrestrieted

hirear temporal formulas vo b preceded by path guantifiers

76 CHAPTER 2. SYMBOLIC MODEL CHECKING

Language containment

The Mu-Calculus can can express the relation of language containment
between two deterministic w-automata. [or the sake of simplicity. we
consider only deterministic Biichi automata. which are not complete
for the class of w-regular languages. but it is not substantially more
difficult to handle more general classes of deterministic automata. such
as Street automata.

A finite deterministic Biichi automaton consists of a set of states
K. an initial state po € K. an alphabet Y. a set of transitions \ C
KN x ¥ < K. and an acceptance set B C K. The transition relation is
such that. for any state p and symbol o. there is exactly one ¢ for which
A(p.o.q). The automaton accepts an infinite sequence o € ¥* iff the
sequence of states p. where \(p;, 0;, pi+1) holds for all ¢. passes through
the acceptance set B infinitelyv often. The set of sequences accepted by
an automaton .M is called the language of M and denoted L£(.M).

To determine whether the language of a Biichi automaton W is
contained in the language of a Biichi automaton W' (with the same
alphabet). we define a Kripke structure representing the product of M
and VI'. and write a formula in CTL which is true if and only if every
sequence accepted by .M is also accepted by MW’ [CDK90]. This formula
can be evaluated using its Mu-Calculus characterization.

The product is defined by its transition relation R, and set of initial
states Sy, Let

I R=\s.5.rr'. Jo. (As.o.r) AN N(s' o).
208 = Ascs (s = po) A ST = py)).

There is a sequence in the language of M/ but not in the language
of M'if and only if there is an path of the product passing through
B infinitely often. but not through B’ infinitely often. Thus. £(M) C
COM"Y Off

Sy = .‘*\(r'xl{_,.s/‘ B(S)}F,\S.S’. [3,(.5")

Another possible approach to the language containment problem
makes use of the transitive closure of the transition relation. First. we
remove from the product structure all transitions that brzin or end

2.6. MU-CALCULUS MODEL CHECKING i
with a state in B’. That is. let
T = \s.s' . r.r[Ris.s".r.r'YA=B'(5YA=B'(r")]
The transitive closure ol rhis relation is
T = pQAs s ro ! T S o)V e d[Q(s s uc Y N Qlucu’ D))

This is the set of all pairs (.. y) of states of the product such that «»
can reach y without passing through B’. This holds for the pair (r..¢)
if and only if & is on a cvele not passing through B’. If there is any
such & in B. and . is reachable. then there is a path passing through
B but not B’ infinitelv often. hence there is a sequence in £{.M). but
not in L(M’). The converse is also true. Hence. L(M) C L(M) if and
only if ~EFAs.s". (T*(s.5".5.5) A B(s)). The EF operator can also
be evaluated using the transitive closure. since

EFp= 2z (p(x)V 3y. (RY(z.y) A ply)))

2.6.2 Symbolic algorithm

By devising a symbolic model checking procedure for the Mu-Calculus.
we can quickly establish symbolic algorithms for all of the above prop-
erties. [f we assume that the domain is B*. a symbolic model checking
algorithm is easily established. by translating formulas into a Boolean
Mu-Caleulus where the domain is just B = {false.true}. This is done
by replacing every individnal svmbol « by a A-tuple of individual svm-
bols tayay o agy. Thas, every n-ary term translates to a kn-arv term.
In the Boolean Mu-Caleulus we can represent terms by Boolean tor-
mmlas by introducing a new set of dummy individual svmbols o, ..
to represent relational parameters. \n n-ary term 7 is represented by
a tormula 7(e) such that

Given e we can comprte the formula representing a term in the Boolean
Mu-Caleulus by recursion over its straceture, as follows:

78 CHAPTER 2. SYMBOLIC MODEL CHECKING

1. The value of relational variable A is v(A).

2. The logical connectives and quantifiers are evaluated by the cor-
responding QBF operations.

3. The value of an n-ary term \vy,....vn). T 1s
Tlej(vg — dy. vn — dy)
4. The value of the proposition 7(vy.....v,). where 7 is an n-ary
term. is T{w|(dy — m..... dp — vn).

3. The n-ary relational terms pY. 7 and vY. 1 are evaluated using
the standard fixed point algorithm.

Because the variables are Boolean valued. we can implement all of the
above using the operations of QBF. with OBDDs as our representa-
tion. The symbolic Mu-Calculus model checking algorithm is shown
in pseudo-code form in figure 2.15. Using this algorithm. any quantity
that can be characterized in the Mu-Calculus can be computed using
the svmbolic model checking technique, with the possibility that a com-
binational explosion can be reduced or avoided. This also allows us to
use the expressive powers of the Mu-Calculus in describing and manipu-
lating svmbolic algorithms. with the understanding that the translation
from Mu-Calculus to a svmbolic algorithm is merely mechanical.

2.7 Computing equivalence relations

[n this section. we consider the problem of computing a svmbolic rep-
resentation of the equivalence relation between the states of two finite
state machines. or between states of the same machine. In the former
case. the relation can be used to determine the equivalence of the two
machines. while in the latter case. as Lin «t al. have observed [LTN90],
the self equivalence relation can be used in optimizing the logic or reg-
ister nsage of the machine.

o
=1

COMPUTING EQUIVALENCE RELATIONS 79

function eval(7.)
case
7 a relational variable: return o (r)
r = —p: return —eval(p.)
7T = pV ¢ return eval(p.) Veval(q. o)
7 = Jw. ¢: return Jw. eval(p. ')
7 = u}. p: return fixedpoint(Y .p.w(} «~ false))
T = vY. p: return fixedpoint(Y.p,w(Y — true))
end case
end function

function fixedpoint(Y .p.v")

Y = eval(p.)

if Y/ = (YY) then return }”

else return fixedpoint(Y p.o (Y — Y"))
end function

Figure 2.15: Svmbolie Ma-Caleulus model checking algorithm

30 CHAPTER 2. SYMBOLIC MODEL CHECKING

2.7.1 State equivalence

We use a standard notion of the equivalence of states of finite Mealy
machines. Two states are equivalent if and only if for all input se-
quences. thev vield the same output sequence. The following is an
alternate characterization: equivalence is the greatest relation between
states such that if ¢ is equivalent to y. then for all inputs. the output
in state & is equal to the output in state y. and the successor state of
£ is equivalent to the successor state of y. Let o(.r.z) be the function
which determines the next state. as a function of current state & and
current input z. and let v(z.z). be the function that determines the
_current output. In the Mu-Calculus. the equivalence relation R, is

R,=vR \e.y. Vz. (n(r.2) = vy 2) A R(6(x.2).0(y.2))) (2.22)

Using the standard fixed point approach. we can evaluate this relation
by a sequence of approximations Rg, R;..... where R; is the set of state
pairs which are equivalent for all input sequences of length ;. This
sequence is characterized by the recurrence

Ry =Ae,y. V= (y(e.2) = y(y,2)) (2.23)

and

Ry =Ny V. (Ri{e.y) N R(6(x.2).0(y,2))) (2.24)

This is simply the standard O(n*) algorithm for computing state equiv-
alence of Mealy machines. The problem of determining whether two
Mealyv machines are equivalent in their initial states can be approached
in two wavs either their equivalence relation can be computed. or the
state space of their product can be exhausted by a forward search. The
number of iterations required for the former approach can be substan-
tiallv less. however. In the trivial case of an n-bit counter. the number
of iterations in the forward search is 1s exponential in n. while one step
suffices to reach a fixed point in the equivalence calculation. since all
states are distinguished by their ontputs.

[t 15 immediately seen that the crucial step in calculation 2.21 is the
substitution of vector functions é(.r.z) and o(y.z) into R,. The most
obvious way to accomplish this is to use Bryant's (‘ompose algorithm.
Some other possible methods are introduced in this section. Computing

2.7, COMPUTING EQUIVALENCE RELATIONS

va
—_—

the OBDD representation for a composition of functions is an NP-hard
problem (cf.. section 2.3.4). thus we expect no good general solutions
to the problem. Another tractability issue is whether the approxima-
tions to the equivalence relation can be compactly represented using
OBDDs. There is no guarantee of this. of course. but there is some
reason to believe. a priori. that it may often bhe the case. First of all.
tor single-machine equivalence. it all distinct states are distinguishable.
then the equivalence relation is the identity velation. which can be rep-
resented as by a linear size OBDD. provided the compouent variables of
v and y are interleaved in the variable ordering. It also seems plausible
that the equivalence relation will often be simply a logical conjunction
of independent relations. cach corresponding to some modular compo-
nent of the svstem. In this case. the OBDD representation will also
be compact. provided the variable ordering conforms to the modular
structure of the machine. In any case. we will see examples of fairlv
complex machines whose equivalence relations are expressed compactly

in OBDD form.

Algorithm using restrictions

Because of the basic difficulty of computing compositions of OBDDs.
it is useful to have some restrictions on the result in order to be able
to solve the problem. Fortunately. the decreasing nature of the series
of approximations defined in 2.21 provides a constraint on the result of
the substitution. since cach approximation 2, is strictly contained in
.. We can use this fact by rewriting 2.21 as

Ry =Xeoy. 720 iRyt AR e) oty 20 L R {2.25)
where | represents the Festriet operator introduced by Coudert. Madre
and Berthet [CBMS9]. This operation produces a function which agrees
with R, (6(r.2). 00y, 21) over the set R, attempting to minimize the

OBDD size. The restriction can be used to varving advantage. depend-
ing on the algorithim nsed for substitution.

Iterative abstraction algorithm

Another way to provide a restriction on the equivalence relation is first
tofind the equivalence relation of an abstracted machine. We choose the

[2
(8™

(‘'HAPTER 2. SYMBOLIC MODEL CHECKING

abstraction in such a way that the equivalence relation of the abstract
machine is strictly weaker than the equivalence relation of the original
machine. Thus. we can compute the equivalence relation of the abstract
machine first. and use it as a restriction in computing the equivalence
relation of the original machine. In particular, we can abstract the
machine by choosing a subset V of the state variables, and at each
approximation quantifying out the remaining variables existentially.
That is. let 1" be the complement of V', and let

Rlv = A\r.y. IV Vz (y(ae.2) = ‘,-'(,1;.:)) (2.26)
and
RYyy = Neoy. 3V (RY (e y) A(RY (8(e.2).8(y.2)) L RY)) (2.27)

[t is trivial to see that each approximation in the series RY is strictly
weaker than the corresponding approximation in R. It follows that RY,
the greatest fixed point. is weaker than R,. Therefore. we can restrict
the entire calculation of R, to only those state pairs satisfying RY. In
addition. we can use a series of subsets V{ C V, C .-+ C Vi where Vi is
the set of all state variables. restricting the first approximation in each
series R*" to the equivalence relation for the previous subset. Thus. we
let '

R = RY=1 A da.y. 3VE. Yz (5(2.2) = v(y.2)) (2.28)

and

Rily = Mooy, 3V 9z (R (eoy) AR (8(e.2).8(y.2)) L RIY)

(2.29)
We will refer to this as the iterative abstraction algorithm for comput-
mg the equivalence relation. By adding only a few variables to each
siiceessive subset. we can in some cases obtain fairly strong restriction.
which allows the substitution o be computed more efficiently. [n other
cases the equivalence relation obtained for the abstracted machine may
be trivial. since abstracting out the variables in 17" mav result in all
machine states appearing eqnivalent at the outputs. This is especially
likelv if the abstracted variables hold important control information
that enables machine registers to be observed at the outputs. Nonethe-
less. we can show cases where this incremental approach is greatlv more
efficient thau the basic algorithm.

2.7, COMPUTING EQUIVALENCE RELATIONS 33

2.7.2 Methods for functional composition

This section considers methods for substituting functions for variables
i OBDDs. This operation is referred to by Brvant as Compose. [t is
the syvntactic mechanism corresponding to functional composition. As
sich. it has a number of applications apart from finding the equivalence
relation of finite state machines. including the evaluation of ("TL tfor-
mulas [BEF3Yb]. Most of the algorithins presented here for this purpose
have been modified to take as an extra argument a restriction on the re-
sult.in the hope that efficiency can be obtained by combining these two
operations. We consider the problem of calculating f(¢,..... dn) | R.
where f. g, ... ¢n and £ are all Boolean functions.

“bottom-up” substitution

This 1s the method originally propoused by Bryant for his (‘ompose al-
gorithm. but with a restriction on the result. In this method. we view
each OBDD node in f as a gate. which computes the tunction “if v,
then h else {" or equivalently, (—v; A1) V (v; A h). Having substituted
the functions g¢i....,¢, for the variables in [and A, we can then com-
pute the result for f using the standard V and A operators. The basic
bottom-up algorithm is

function bottom-np(f. 1)
if [is aleat then return f
if bottom-upt f. B has already been solved then retnrn old <olution
else . f is a triple (r,. fiL fi))
I'= bottom-upt f,. [?)
It = bottom-upt f,. I7)
return (=g, Ay sy, > by L R
end

Note that the restriction operator is nsed at cach step to simplify
the result. Since each subproblem is solved only once. the munber of

reenpsive calls to hottom ap s o1

34 CHAPTER 2. SYMBOLIC MODEL CHECKING
Domain partitioning

The domain partitioning strategy is so named because it divides the
problem into two subproblems by partitioning the domain of the func-
tions ¢y..... gn according to the value of one of the variables. The
operation proceeds in several steps.

First. we observe that if anv of ¢,..... ¢gn are constants. we can
immediately substitute these values into f. since substitution bv a con-
stant 1s a linear time operation which can only reduce the size of the
OBDD. We use the fact that if ¢; = ¢. where ¢ is 0 or 1. then

JAC/TE gn) = flvi = c)gr..... Jn) (2.30)

Next. we observe that we can eliminate any argument position on which
f Joes not depend. thus obtaining a smaller problem with the same
result. We can determine the set of variables on which f depends in
linear time. since f depends on v; if and only if v; appears in some node
in f.

If at this point the function f has been reduced to a constant. we are
done. Otherwise. we split the problem into two cases and recurse. We
choose the first variable v; occurring in ¢;... .. 9n. and apply Shannon’s
expansion. obtaining two subproblems

I' = flgile; —0). ..., galt, —0))
h flogte, — ... galvi — 1))

As in other OBDD algorithms. the result is an OBDD r = (. L. h).
provided / = h. otherwise r =/ = h. Needless to sav. we use a hash
table. caching the results of subproblems so that the same subproblem
1s not solved twice. With caching. the complexity of the algorithm is
O0f] < Tl

Making use of the restriction R in this algorithm is straightforward.
[f /¢ = 0. the result can be anyv function at all. so we simply return 0.
F.ach time we partition the problem into subproblems. we also spht R
into two cases. v, — () and R(r, — 1). The restriction has the effect
of cutting off the recursion each time a 0 leaf is reached in 7.

2.7. COMPUTING EQUIVALENCE RELATIONS 85

Sequential substitution

This i1s perhaps the simplest approach to substitution; it transforms
a simultaneous substitution problem into a sequence of substitutions.
This is done by replacing each variable v; in the OBDD for f by a new
variable v]. Having done this. it is safe to perform the substitutions of
each function g; for v} in any order. since none of the tunctions ¢, Gn
depends on any variable being substituted. Substitution of a function
for a single variable can be accomplished as follows:

flel =gy =20 [(v] &= gi) A f] (2.31)

This approach can also make effective use of a restriction. The
restriction operator operator may in fact be applied after each substi-
tution step if desired. potentially reducing the size ot the intermediate
results. In the case of the iterative abstraction algorithm. the fact that
some of the variables in the result will later be quantified out existen-
tially can also be put to use. We can move the existential quantifiers for
these variables inside the conjunction, thus quantifying the abstracted
variables out of the term (v <= g¢;) before applying the conjunction.
This may weaken our result somewhat. since {3z. a] A [3z. b] is weaker
than 3z.[a A b], but it can produce significant reductions in the size of
the intermediate results. The final result of the equivalence algorithm
1s unchanged. since it is computed with no variables abstracted.

2.7.3 Experimental results

This section presents the results of applving the various equivalence
relation algorithms to several example state machines, with a range
of complexity. The results are compared to published results tor the
same circuits by Touati ¢f «l. (computing only the reachable states)
and Lin et al. (computing the equivalence relation). In all cases. it
is self-equivalence that is calculated. [t would be interesting to have
somne results in this section on calculating the state equivalence relation
between two different implementations of a given machine. but unfor-
tunately. such examples were lacking. The three different approaches
to OBDD substitution are compared. {or each example. \Where pos-
sible, the direct algorithm 1s nsed. otherwise. the iterative abstraction

36 CHAPTER 2. SYMBOLIC MODEL CHECKING

machine mtd result b-u d-p seq | Touati Lin
(nodes) | (secs) | (secs) | (secs) | (secs) | (secs)

sbe iter 361 | 2054 | > 10K | 2415 2903

cpb32 iter 95| 45.5 4.4 344 4.1] 12.10

key iter 167 342 1738 384 3706 | 175.20

minmax10 | dir 39 197 255 204

minmax20 | dir 59 3.0 4.5 6.7

minmax30 | dir 39 6.2 9.0 15.7

Table 2.1: Equivalence calculation times

algorithm is used. For example. the state equivalence relation for the
machine sbc was calculated using iteration. but could not be calculated
directly. Table 2.1 gives the total execution time in seconds. while
table 2.2 gives the total number of OBDD nodes used.'” The latter
numbers are not very reliable. since they depend to some extent on ar-
bitrary choices about when to scavenge unused cells and cache entries.
However. if the available memory limit of 190.000 nodes is exceeded,
it is certain that all of the nodes in use were necessary for the com-
putation. since all available nodes were scavenged when the memory
limit was reached. The columns give the following information: the
name of the circuit. the method used (direct or iterative). the size of
the equivalence relation. and the time or space needed for each of the
three substitution methods (hottom-up. domain partitioning. and se-
quential). The times are for a LISP implementation running on a 1
MIP minicomputer. The final two columns give the results obtained
by Touati ¢f al. and Lin et al. for the same eircuit. These times are for
(" langnage implementations running on a DEC' 5400 and [BM R6000
respectivelv.

[t would seem that for the circuits cpb. kev and minmax. which have
regular structures with no control registers. there is no clear choice as to

“Aectually. function praphs with negated ares were used for this calcula-
tion [Bil87}. hence the number of nodes may be slightly smaller than what would
ve obtauned using OBDDs,

2.7. COMPUTING EQUIVALENCE RELATIONS 87

machine mtd result b-u d-p seq
L | (nodes) | (nodes) | (nodes) | (nodes)
sbe iter 361 [22184 34609
cpb32 iter 95 | 8202 4225 11295
key | iter 167 13328 | 24368 11563
minmaxi0 | dir 39 16589 17815 17566
minmax20 | dir 39 | 8538 3492 9190
minmax30 | dir 39 11952 11886 10001

Table 2.2: Equivalence calculation space

which substitution algorithm is best. The bottom-up algorithm tends
to provide the best performance with the least memory usage. but there
are a number of exceptions. The machine sbc, which is somewhat more
complex, is a more interesting case. Here bottom-up and sequential
both provide fairly efficient solutions, although the iterative method
was required in both cases to solve the problem. The domain partition-
ing approach fails to terminate after 10,000 seconds. In the first stage
of the iterative algorithm, domain partitioning produced over 100.000
subproblems for a final result of approximately 100 nodes. Obviously.
many different subproblems with identical results are being solved. The
difficulty is that there is no easy way to identify equivalent problems.
[t is worth mentioning the the limit on the size of the cache for this
method was 3000 entries. With an unbounded cache. the performance
of the algorithm may be much better (a matter of theoretical interest
at best. since an unbounded cache cannot be provided). It should also
be noted that the results for minmax are somewhat anomalous. since
the 10-bit version seems to be substantially more complex than the 20-
and 30-bit cases. This is explained by the fact that the output func-
tions of these different versions were not the same. In the 20- and 30-
bit versions. the outputs appear to depend only on the "last” register.
and not the "min” and “max” registers. [t is also interesting to observe
that for minmax10. not all of the states are distinguishable. that is. the
equivalence relation is not the identity.

38 CHAPTER 2. SYMBOLIC MODEL CHECKING

Comparing these results to those of Touati et al., it is interesting to
note that the self-equivalence relation can be computed in less time than
the reachable states for sbc and key (taking into account the difference
" in machines speeds of roughly a factor 10, the equivalence method seems
to be about one order of magnitude faster for sbc, and two orders of
magnitude faster for key). Of course, the information obtained by the
two methods is not the same. [t seems. however. that in some cases
where the set of reachable states is not obtainable, the equivalence
computation may still provide useful information for logic optimization.
The results of Lin et al. seem to be roughly comparable for the machines
key and cpb32 (again, taking into account the difference in machine
speeds). It is not clear from the Lin et al. article which substitution
method was used. since two were mentioned. The one benchmark for
which the iterative method was required to produce a result was sbc,
but unfortunately Lin et al. do not report a figure for this machine.
Also. because of the fact the the 20- and 30-bit versions of minmax
had modified output functions, it is not possible to compare figures
for this benchmark. As a result of these ambiguities. it difficult to
draw conclusions about the effectiveness of the iterative abstraction
method, except to say that in one case (sbc) it was the only method
that successfully computed the equivalence relation.

2.8 Related research

The author first experimented with the use of OBDDs to represent
sets of states and transition relations in 1987. building the first sym-
bolic model checker tor CTL. Various heuristic improvements to the
basic technique were developed. including the OBDD algorithm com-
bining existential quantification and conjunction (cf. section 2.3.4). and
the technique of early quantification for disjunctive transition relations
(cf. section 2.14.2). Extending this work. Burch. Clarke. Long, McMil-
lan. Dill and Hwang described a symbolic model checking procedure
for the propositional Mu-Calculus. which could be used for a variety
of purposes. including CTL model checking. testing various process
equivalences. testing language containment of w-automata. and check-
ing satisfiability of LTL formulas [BCM*90]. In 1939. the author used

2.8. RELATED RESEARCH 89

the model checking technique to verify the cache consistency protocol
of the Encore Gigamax multiprocessor (see chapter 4). In the process,
a model checking system called SMV was developed, along with an
associated description language (see chapter 3).

In 1989, the idea of using the OBDD representation for verification
of finite state machines appears to have been independently developed
by Coudert, Madre and Berthet [CBM89], who used it in their PRIAM
system for testing equivalence of finite state machines. They represent a
finite state machine by a pair of vector Boolean functions. The function
6(v, w) vields the next state vector as a function of the current state
vector v and the input vector w. The function A(v.w) yields the output
vector as a function of v and w. The equivalence of two state machines is
tested by creating a combined machine in which both machines receive
the same input vector. and the output is a single bit which is true if and
only if the output vectors of the two machines are equal. The reachable
states of this combined machine are computed. If in all reachable states
the output is true, the two machines are equivalent, since no input
sequence can produce differing output sequences from the two machines.

The set of reached states is computed as the limit of an increasing
series of approximations. starting with the initial state. The set of
states reachable in one step from a set S is computed by a function
called mag, where [mag(d.5) = {s | Jv,w: v € 5. §(v.w) = s}. Most
of Coudert. Madre and Berthet's efforts are applied to computing the
[mag tunction without resort to representing the transition relation as
an OBDD. which thev claim is generally intractable. Their approach
begins by reducing the problem of computing the image of a set via a
tunction. to computing the range of a function. This is done using an
OBDD operation called (‘onstrain. The (Constrain operator takes two
Boolean functions f and ¢. and returns a tfunction f’ = Constraint f. y)
with the following property: for all z’. f'{z') = f(r). where r is the
nearest Boolean vector to ' (according to a suitable distance metric)
such that g(r) = 1. If we let &' = Constrain(d. S). then the image ot ~
via 0 is just the range of o'

(Coudert and Madre suggest two methods for computing the range of
o'. The first is called range partitioning. [n this approach. we pick the
lowest remaining variable in the ordering (call it v;). and. and divide
the problem into two subproblems. depending on the output of function

90 CHAPTER 2. SYMBOLIC MODEL CHECKING

6;. Thus.

(Range(é'))(vi — 0) = Range(Constrain(d’, —4'))
(Range(8'))(v; — 1) = Range(Constrain(§',6))

Note that for any function f,

Constrain(f,f) = | and
Constrain(f.—~f) = 0

so each recursion effectively eliminates one component function of §'.

The recursion terminates when all of the components of §’ are constants.
The other approach. called domain partitioning, is to divide into

subproblems based on the value of one of the inputs to ¢’. Thus.

Range(d') = Range(d'(v; — 0)) V Range(8'(v; — 1))

Again. the recursion terminates when all of the components of §’ are
constants.

Both of these strategies are special cases of a general strategy where
one chooses a cover. which is a pair of functions A, and A, such that
hy V hy = L. and then computes the recursion

Range(d') = Range(Constrain(d’. hy)) V Ranget Constrainid’. hs))

In the case of range partitioning. hy = ¢’ and ha = =9, In the case of
domain partitioning, iy = v; and h: = —v,. [t is suggested that other
covers may be useful as well. As with other OBDD techniques. a table
ot pairs 10’ Range(d')) is kept to avoid solving the same subproblem
twice. [his table 1s not as effective as the in the case of the standard
OBDD operations. however. since the number of possible subproblems
is exponential in the number of state variables. (‘oudert and Madre
suggest several optimizations for increasing the hit rate in this table.
A turther optimization introduced b (‘oudert and Madre is to use
an OBDD tunction called Restrict to reduce the size ot the reached state
set before applyving the /mayg operator. The Restrict operator takes two
functions f and ¢. and produces a function f' = Restrict{ f. ¢) such that
tor all . if y(x) = Lthen f/(x) = f(r). otherwise f’(r) is arbitrarv.

2.8. RELATED RESEARCH 91

Usually (but not always), the size of f’ is less than the size of f. We
note that if R, is the set of states reachable after : steps of the machine,
then

Ry = RV Imag(é, R;)
RV Imag(é, Restrict(R:, ~Ri_1))

As a result. the size of the arguments of /mag can sometimes be reduced
using Restrict.

Coudert and Madre report experimental results for computation
of the set of reachable states for a variety of small sequential circuits
{mostly [SCAS!® sequential benchmark circuits). Computing the set of
reached states can be useful for generating test patterns or “don’t care”
condition. for logic optimization [TSL*90]. Unfortunately. Coudert and
Madre do not use their techniques to actually test the equivalence of
two state machines, so it is unknown whether the technique is useful
for this purpose. They have not studied the asymptotic performance of
their techniques for classes of circuits, so it is not possible to determine
whether their optimizations yield asymptotic improvements.

A variant on the symbolic model checking technique for CTL was
proposed by Bose and Fisher [BF89b]. Their technique, which is lim-
ited to deterministic finite state machines, also represents the tran-
sition relation of the machine by a vector of Boolean functions 4.
and uses Bryant's (Compose operation to compute EXp = p(v; —
».). Thev do not report experimental results using this technique for
practical circuits. A similar technique was proposed bv (oudert and
Madre iCMBILL

Other researchers have proposed techniques to avoid constructing
rhe transition relation. For example. Burch. C'larke and Long use early
quantification (cf. section 2.4.2) for both disjunctive and conjunctive
rransition relations [BC'L91b. BCL91a]. They use the term “partitioned
rransition relations™ for this. The technique is somewhat limited in the
case of conjunctive transition relations. because existential quantifica-
rion only distributes over conjunction in the special case when one of
the conjuncts does not depend on the variable being quantified. Nev-

“nternational Symposium on Cicentts and Svstems

92 CHAPTER 2. SYMBOLIC MODEL CHECKING

ertheless, there are cases where the support of the component relations
is sufficiently disjoint to make this technique effective.

The basic technique is the following: assume we wish to com-
pute Jv. A, fi, where v = (v;,...,vx) is a vector of variables and
f =1(fi,....fm) is a vector of Boolean functions. Since conjunction
is associative and commutative, we can combine these functions in any
order we choose. In addition, if at any time there is a variable occurring
in only one function, we can quantify that variable out, since Jw. (pAgq)
is equivalent to (Jw.p)Aq when g does not depend on w. Since quantifi-
cation tends to reduce OBDD size by reducing the number of variables.
the strategy is to combine the functions in such an order that variables
can be quantified out as soon as possible.

Burch Clarke and Long use a fixed order determined by the user
for combining the functions. They show that this is quite effective
for pipelined data path circuits. and an asynchronous stack circuit,
improving the asymptotic performance as the circuit size increases. For
the DME circuit. the asymptotic performance of this method was not
as good as a method using a disjunctive transition relation. but it can
be more efficient for small rings.!® [t was found most efficient to group
the components of the transition relation and combine each group in
advance, thus avoiding some computation at each step.

For disjunctive transition relations (interleaving models). Burch.
("larke and Long introduce a modified search order that tends to reduce
the representation of the reached state set. In a breadth first search.
the representation of this set is complicated by the fact that the after n
steps. the number of steps taken by each process is constrained to sum
to n. This produces an artificial correlation between the states of oth-
erwise independent processes (cf. sectien 2.1.2). To counter this. one
can modily the search order. searching first all of the states reachable
by transitions of one subset of the svstem processes. then the next.
and repeating this process until a fixed point is reached. This tech-
nique. called "modified breadth first search”. was effective in reducing
the OBDDs representing the reached state sets for an asynchronous
stack circuit. but was found not to be as effective as the “conjunctive
partitioning” method. For the DME circuit. the modified breadth first

Y Personal communication.

2.8. RELATED RESEARCH 93

search method was faster up to about 16 cells, but had slower asymp-
totic performance. The grouping of processes into subsets was manual.

Another OBDD based technique for computing the reachable states
of a machine was introduced by Touati et al. [TSL*90]. They also
use a conjunction of component relations to represent the transition
relation, along with early quantification. However, they combine this
technique with the Constrain operation of Coudert et al.. This reduces
the problem of computing the image of a set via a relation to that of
computing the codomain of a relation. A series of approximations A;
to the reachable states is computed, such that

Aip1 = A; V Ay. 3z. (/\ Constrain(R;, A;))(z. y)
J

where R is a vector of component relations, each relation determining
the new state of one state variable. Touati et al. find this technique
to be superior to using the transition relation directly and to using the
Imag operation of Coudert et al. for computing the reachable states of
the benchmark circuits minmax and sbc, somewhat slower for key, and
roughly the same for cpb.32.4. It would be interesting to know for the
cases where an improvement was obtained, how much was due to the use
of Constrain and how much to the use of early quantification. Touati
et al. have also suggested partitioning complex next-state functions
into the composition of a sequence of smaller functions. This could be
useful for circuits containing multipliers. or other functions which have
no compact OBDD representation.

Touati. Brayvton and Kurshan report a technique for testing lan-
guage containment of w-automata using OBDDs [TBK91]. They use
the L-automaton model of Kurshan [Kur36], and an algorithm similar
to the one described in section 2.6.1 using the transitive closure of the
transition relation. No experimental results using this technique are
available.

Another way that one can test equivalence of two finite state ma-
chines is by computing the equivalence relation on states. as described
in section 2.7. Lin et al. alsa describe OBDD based algorithms for
computing this relation [LTN90]. A comparison of the methods can be
found in section 2.7. Lin et al. describe how the equivalence relation
can be nsed for computing “don’t care” conditions for logic optimiza-

94 CHAPTER 2. SYMBOLIC MODEL CHECKING

tion. In a later paper [LN91], Lin shows how this relation (represented
as an OBDD) can be used for state minimization, using an operator
which takes an equivalence relation and returns a relation which maps
every state onto the least element of its equivalence class.

Bryant and Seger have taken an an approach to formal verification
using OBDDs based on symbolic simulation [Bry88, BBS90. BS90]. The
symbolic simulator is similar to an ordinary logic simulator, except that
the inputs are symbolic values (variables) rather than numeric values,
and the outputs are given as symbolic functions in terms of these vari-
ables. These functions are represented by OBDDs. The simulation
method gains a great deal in efficiency by using an abstract interpre-
tation of the circuit model. This abstraction uses a lattice consisting
of the three values 0. 1 and X. where X is the least upper hound of 0
and l. The circuit operations such as AND and OR are abstracted in
such a way as to be monotonic with respect to this lattice. Therefore.
the output of the abstract simulation is always an upper bound on the
output of the concrete simulation. In many cases. a large number of
the inputs and initial values of state variables can be replaced by X
without sacrificing the particular circuit property being proved. The
art in this technique is to decompose the specification in such a way
that each part can be verified using only a small number of symbolic
values and X everywhere else. The simulation technique is limited to
a logic with only next-time operators. These formulas can be verified
using symbolic simulations of finite execution sequences. This rules out
proving properties such as liveness. fairness or deadlock freedom. but
allows saftety properties to be proved using invariants.

Bose and Fisher have demonstrated a technique for using repre-
sentation functions to verify sequential circuits using OBDDs {BF39a).
A representation function maps each state ol the impiementation to =
state of the specification (which is also a circuit). Symbolic simulation
techniques can be used to show a kind of single step equivalence be-
tween the implementation and specification vis @ vis this relation. As
in the method of Bryant and Seger. this proot can be decomposed into
parts in such a way that each part requires only a small number of
symbolic variables. with the remaining circuit nodes initialized to X.
Typically. an invariant is also required. since the single step equivalence
only holds over the reachable state space of the implementation. This

2.8. RELATED RESEARCH 95

technique is also limited in that it cannot prove liveness or deadlock
properties.

Long and Grumberg have introduced an abstraction technique us-
ing OBDDs which is more general than simply introducing X val-
ues [CGL92]. Their technique uses an OBDD to express the relation
between the abstract and concrete domains. The abstract transition
relation is automatically derived using OBDD techniques from the con-
crete transition relation. This can be done in a compositional way to
reduce the number of symbolic variables that are required. A variety
of abstractions have been put to use in this way. For example, a binary
number can be represented by its remainders modulo a set of relatively
prime numbers. This has allowed the use of the Chinese remainder the-
orem to prove the correctness of a multiplier circuit. In another case.
a single bit was used to represent whether a given binary number in a
circuit is equal to a given symbolic binary value. In this way the entire
function of the arithmetic unit was abstracted away, allowing a data
pipeline circuit with 64 64-bit registers to be verified. This abstrac-
tion technique is quite general. and is closely related to more classical
abstraction techniques [Kur37]. The difference is that function graph
methods are used to actually compute the abstract transition relation.
rather than giving this relation a priori.

96

CHAPTER 2. SYMBOLIC MODEL CHECKING

Chapter 3
The SMYV system

The SMV system is a tool for checking finite state systems against
specifications in the temporal logic CTL. The input language of SMV
is designed to allow the description of finite state systems that range
from completely synchronous to completely asynchronous, and from the
detailed to the abstract. One can readily specify a system as a syn-
chronous Mealy machine, or as an asynchronous network of abstract,
nondeterministic processes. The language provides for modular hierar-
chical descriptions, and for the definition of reusable components. Since
it is intended to describe finite state machines, the only basic data types
in the language are finite scalar types. Static, structured data types
can also be constructed. The logic CTL allows a rich class of temporal
properties, including safety. liveness, tairness and deadlock freedom. to
be specified in a concise syntax. SMV uses the OBDD-based symbolic
model checking algorithm to efficiently determine whether specifica-
tions expressed in CTL are satisfied.

The primary purpose of the SMV input language is to provide a
symbolic description of the transition relation of a finite Kripke struc-
ture. Any propositional formula can be used to describe this relation.
This provides a great deal of flexibility, and at the same time a cer-
tain danger of inconsistency. For example. the presence of a logical
contradiction can result in a deadlock - a state or states with no suc-
cessor. This can make some specifications vacuously true. and makes
the description unimplementable. While the model checking process
can be used to check for deadlocks, it is best to avoid the problem

97

98 CHAPTER 3. THE SMV SYSTEM

when possible by using a restricted description style. The SMV system
supports this by providing a parallel-assignment syntax. The semantics
of assignment in SMV is similar to that of single assignment data flow
languages. A program can be viewed as a system of simultaneous equa-
tions, whose solutions determine the next state. By checking programs
for multiple assignments to the same variable, circular dependencies,
and type errors. the compiler insures that a program using only the
assignment mechanism is implementable. Consequently, this fragment
of the language can be viewed as a hardware description language, or
a programming language. The SMV system is by no means the last
word on symbolic model checking techniques, nor is it intended to be a
complete hardware description language. It is simply an experimental
tool for exploring the possible applications of symbolic model checking
to hardware verification.

3.1 An informal introduction

Before delving into the syntax and semantics of the language. let us
first consider a few simple examples that illustrate the basic concepts.
Consider the following short program in the language.

MODULE main

VAR
request : boolean;
state : {ready,busy};

ASSIGN
init(state) := ready;
next(state) := case
state = ready & request : busy;
1 : {ready,busy};
esac;
SPEC

AG(request -> AF state = busy)

The input file describes both the model and the specification. The
model is a Kripke structure, whose state is defined by a collection of
state variables. which may be of Boolean or scalar type. The variable

3.1. AN INFORMAL INTRODUCTION 99

request is declared to be a Boolean in the above program, while the
variable state is a scalar. which can take on the symbolic values ready
or busy. The value of a scalar variable is encoded by the compiler
using a collection of Boolean variables. so that the transition relation
may be represented by an OBDD. This encoding is invisible to the user.
however.

The transition relation of the Kripke structure, and its initial state
(or states). are determined by a collection of parallel assignments (a
systemn of simultaneous equations). which are introduced by the key-
word ASSIGN. In the above program, the initial value of the variable
state is set to ready. The next value of state is determined by the
current state of the system by assigning it the value of the expression

case _
state = ready & request : busy;
1 : {ready,busy};

esac;

The value of a case expression is determined by the first expression
on the right hand side of a (:) such that the condition on the left hand
side is true. Thus. if state = ready & requestis true. then the result
of the expression is busy. otherwise, it is the set {ready,busy}. When
a set is assigned to a variable. the result is a non-deterministic choice
among the values in the set. Thus. il the value of status is not ready.
or request is false (in the current state). the value of state in the next
state can be either ready or busy. Non-deterministic choices are usetul
tor describing systems which are not vet fully implemented (ie.. where
some design choices are left to the implementor). or abstract models of
complex protocols. where the value of some state variables cannot be
completely determined.

Notice that the variable request is not assigned in this program.
This leaves the SMV system tree to choose any value for this variable.
giving it the characteristics of an unconstrained input to the system.

The specification of the svstem appears as a formula in C'TL under
the kevword SPEC. The SMV model checker verifies that all possible
initial statés satisty the specification. In this case. the specification is
that invariantly if request is true. then inevitably the value of state
is busy.

100 CHAPTER 3. THE SMV SYSTEM

The following program illustrates the definition of reusable modules
and expressions. It is a model of a 3 bit binary counter circuit. Notice
that the module name “main” has special meaning in SMV, in the same
way that it does in the C programming language. The order of module
definitions in the input file is inconsequential.

MODULE main
VAR ’
bit0 : counter_cell(l);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry._out

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value) := 0O;
next(value) := value + carry_in mod 2;
DEFINE
carry._out := value & carry_in;

In this example, we see that a variable can also be an instance of a
user defined module. The module in this case is counter_cell, which
is instantiated three times. with the names bit0, bit1 and bit2. The
counter cell module has one formal parameter carry_in. In the instance
bitO0. this formal parameter is given the actual value L. In the instance
bitl. carryin is given the value of the expression bit0.carry.out.
This expression is evaluated in the context of the main module. How-
ever, an expression of the form «.b denotes.component b of module a.
just as if the module a were a data structure in a standard program-
ming language. Hence, the carry.in of module bit1 is the carry_out
of module bit0. The keyword DEFINE is used to assign the expres-
sion value & carry.in to the symbol carry_out. Definitions of this
tvpe are useful for describing Mealy machines. They are analogous to
macro definitions. but notice that a symbol can be referenced before it
is defined.

3.1. AN INFORMAL INTRODUCTION 101

The effect of the DEFINE statement could have been obtained by
declaring a variable and assigning its value, as follows:

VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Notice that in this case. the current value of the variable is assigned.
rather than the next value. Defined svmbols are sometimes preferable to
variables. however, since they don’t require introducing a new variable
into the OBDD representation of the svstem. The weakness of defined
symbols is that they cannot be given values non-deterministically. An-
other difference between defined svmbols and variables is that while
variables are statically typed. definitions are not. This may be an ad-
vantage or a disadvantage. depending on vour point of view.

[n a parallel-assignment language. the question arises: “What hap-
pens if a given variable is assigned twice in parallel?” More seriously:
“What happens in the case of an absurdity. like a := a + 1; (as op-
posed to the sensible next(a) := a + 1;)?” In the case of SMV. the
compiler detects both multiple assignments and circular dependencies.
and treats these as semantic errors. even in the case where the corre-
sponding system of equations has a unique solution. .\nother way of
putting this is that there must be a total order in which the assignments
can be executed which respects all of the data dependencies. The same
logic applies to defined symbols. As a result. all legal SMV programs
are realizable.

By default. all of the assignment statements in an SMV program
are executed in parallel and simultaneously. It is possible. however. to
cefine a collection of parallel processes. whose actions are interleaved
arbitrarily in the execution sequence of the program. This is useful
for describing communication protocols, asynchronous circuits. or other
systems whose actions are not synchronized (including synchronous cir-
cuits with more than one clock). This technique is illustrated by the
tollowing program. which represents a ring of three inverting gates.

MODULE main
VAR
gatel : process inverter(gate3.output);

102 CHAPTER 3. THE SMV SYSTEM

gate2 : process inverter(gatel.output);

gate3 : process inverter(gate2.output);
SPEC

(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter(input)
VAR
output : boolean;
ASSIGN :
init(output) :
next(output) :

0;
'input;

A process is an instance of a module which is introduced by the key-
word process. The program executes a step by non-deterministically
choosing a process. then executing all of the assigninent statements in
that process in parallel. It is implicit that if a given variable is not as-
signed by the process. then its value remains unchanged. Because the
choice of the next process to execute is non-deterministic. this program
models the ring of inverters independently of the speed of the gates.
The specification of this program states that the output of gatel os-
cillates (:e., that its value is infinitely often zero. and infinitely often
1). In fact. this specification is false, since the system is not forced to
execute every process infinitely often. hence the output of a given gate
may remain constant, regardless of changes of its input.

In order to force a given process to execute infinitely often. we can
use a fairness constraint. A fairness constraint restricts the attention
of the model checker to those execution paths along which a given CTL
formula is true infinitely often. Each process has a special variable
called running which is true if and only if that process is currently
executing. By adding the declaration

FAIRNESS
running

to the module inverter. we can effectively force every instance of
inverter to execute infinitely often. thus making the specification true.

One advantage of using interleaving processes to describe a sys-
tem is that it allows a particularly efficient OBDD representation of
the transition relation. We observe that the set of states reachable by

3.1. AN INFORMAL INTRODUCTION 103

one step of the program is the union of the sets of states reachable by
each individual process. Hence, rather than constructing the transi-
tion relation of the entire system, we can use the transition relations of
the individual processes separately and the combine the results (cf. sec-
tion 2.4.2). This can yield a substantial savings in space in representing
the transition relation.

The alternative to using processes to model an asynchronous circuit
would be to have all gates execute simultaneously, but allow each gate
the non-deterministic choice of evaluating its output, or keeping the
same output value. Such a mnode! of the inverter ring would look like
the following:

MODULE main
VAR
gatel : inverter(gate3.output);
gate2 : inverter(gate2.output);
" gate3 : inverter(gatel.output);
SPEC
(AG AF gatel.out) & (AG AF 'gatel.out)

MODULE inverter(input)

VAR
output : boolean;
ASSIGN
init(output) := 0;
next(output) := !input union output;

The union operator allows us to express a nondeterministic choice
between two expressions. Thus. the next output of each gate can be
either its current output. or the negation of its current input - each
gate can choose non-deterministically whether to delay or not. \s a
result. the number of possible transitions from a given state can be
as high as 2". where n is the number of gates. This sometimes (but
not always) makes it more expensive to represent the transition rela-
tion. The relative advantages of interleaving and simultaneous models
of asvnchronous systems are discussed in section 2.1.2.

As a second example of processes. the following program uses a
variable semaphore to implement mutual exclusion between two asvn-
chronous processes. [lach process has four states: idle. entering.

104 CHAPTER 3. THE SMV SYSTEM

critical and exiting. The entering state indicates that the process
wants to enter its critical region. If the variable semaphore is zero, it
goes to the critical state, and sets semaphore to one. On exiting its
critical region, the process sets semaphore to zero again.

MODULE main
VAR
semaphore : boolean;
procl : process user;
proc2 : process user;
ASSIGN
init(semaphore) := 0;
SPEC
AG !'(procl.state = critical & proc2.state = critical)

MODULE user
VAR
"state : {idle,entering,critical,exiting};
ASSIGN
init(state)
next(state) :
case
state = idle : {idle,entering};

idle;

state = entering & !semaphore : critical;
state = critical : {critical,exiting};
state = exiting : idle;
1 : state;
esac;
next(semaphore) :=
case

state = entering : !;
state = exiting : O;
1 : semaphore;
esac;
FAIRNESS
running

[f any specification in the program is false. the SMV model checker
attempts to produce a counterexample. proving that the specification is
false. This is not always possible. since formulas preceded by existential

3.1. AN INFORMAL INTRODUCTION 105

path quantifiers cannot be proved false by a showing a single execution
path. Similarly, subformulas preceded by universal path quantifier can-
not be proved true by a showing a single execution path. In addition,
some formulas require infinite execution paths as counterexamples. In
this case, the model checker outputs a looping path up to and including
the first repetition of a state.

-In the case of the semaphore program. suppose that the specification
were changed to

AG (procl.state = entering -> AF procl.state = critical)

[n other words. we specify that if procl wants to enter its critical
region, it eventually does. The output of the model checker in this
case is shown in figure 3.1. The counterexample shows a path with
procl going to the entering state. tollowed by a loop in which proc2
repeatedly enters its critical region and the returns to its idle state.
with procl only executing only while proc2 is in its critical region.
This path shows that the specification is talse. since proc! never enters
its critical region. Note that in the printout of an execution sequence.
only the values of variables that change are printed. to make it easier
to follow the action in systems with a large number of variables.

Although the parallel assignment mechanism should be suitable to
imost purposes. it is possible in SMV to specify the transition relation
directly as a propositional formula in terms of the current and next
values of the state variables. .\ny current/next state pair is in the
transition relation if and only if the value of the formula is one. Simi-
larly. it is possible to give the set of initial states as a formula in terms ot
only the current state variables. These two tunctions are accomplished
by the TRANS and INIT statements respectively. s an example. here
is a description of the three inverter ring using only TRANS and [NIT:

MODULE main
VAR
gatel : inverter(gate3.output);
gate2 : inverter(gatel.output);
gate3 : inverter(gate2.output);
SPEC
(AG AF gatel.out) & (AG AF !'gatel.out)

106 CHAPTER 3. THE SMV SYSTEM

specification is false
AG (procl.state = entering -> AF proci.s... is false:
.semaphore = 0

.procl.state
.proc2.state

idle
idle

next state:
(executing process .procl]

next state:
.procl.state = entering

AF procl.state = critical is false:
[executing process .proc2]

next state:
[executing process .proc2]
.proc2.state = entering

next state:

[executing process .proci]
.semaphore = 1
.proc2.state = critical

next state:
(executing process .proc2]

next state:
(executing process .proc2]
.proc2.state = exiting

next state:
.semaphore = 0

.proc2.state = idle

Figure 3.1: Model checker output for semaphore example

3.1. AN INFORMAL INTRODUCTION 107

MODULE inverter(input)
VAR
output : boolean;
INIT
output = 0
TRANS
next(output) = 'input | next(output) = output

According to the TRANS declaration. for each inverter. the next value
of the output is equal either to the negation of the input, or to the
current value of the output. Thus, in effect, each gate can choose non-
deterministically whether or not to delay. The use of TRANS and INIT
is not recommended. since logical absurdities in these declarations can
lead to unimplementable descriptions. For example, one could declare
the logical constant O (false) to represent the transition relation. re-
sulting in a system with no trausitions at all. However. the flexibility
of these mechanisms may be useful for those writing translators from
other languages to SMV.

To summarize. the SMV language is designed to be flexible in terms
of the stvles of models it can describe. [t is possible to fairlv concisely
describe synchronous or asynchronous systems. to describe detailed de-
terministic models or abstract nondeterministic models. and to exploit
the modular structure of a system to make the description more con-
cise. [t is also possible to write logical absurdities if one desires to. and
also sometimes if one does not desire to. using the TRANS and INIT dec-
larations. By using only the parallel assignment mechanism, however.
this problem can be avoided. The language is designed to exploit the
capabilities of the syibolic model checking technique. As a result the
available data types are all static and finite. No attempt has been made
to support a particular model of communication between concurrent
processes (eg., synchronous or asynchronous message passing). In ad-
dition. there is no explici* support for some features of communicating
process models such as sequential composition. Since the full generality
of the symbolic model checking technique is available through the SMV
language. it is possible that translators from various languages. process
models, and intermediate formats could be created. In particular. ex-
isting silicon compilers could be used to translate high level languages
with rich feature sets into a low level form (such as a Mealy machine)

108 CHAPTER 3. THE SMV SYSTEM

that could be readily translated into the SMV language.

3.2 The input language

This section describes the various constructs of the SMV input lan-
guage, and their syntax.

3.2.1 Lexical conventions

An atom in the syntax described below may be any sequence of char-
acters in the set {A-Z,a-z,0-9,_,-}, beginning with an alphabetic
character. All characters in a name are significant. and case is signif-
icant. Whitespace characters are space. tab and newline. Any string
starting with two dashes (“--") and ending with a newline is a com-
ment. A number is any sequence of digits. Any other tokens recognized
by the parser are enclosed in quotes in the syntax expressions below.

3.2.2 Expressions

Expressions are constructed from variables, constants. and a collection
of operators. including Boolean connectives, integer arithmetic opera-
tors. and case expressions. The syntax of expressions is as follows.

expr ::
atom ;3 a symbolic constant
| number ;; a numeric constant
| id ;; a variable identifier
| "' expr ;5 logical not
| expri "&" expr2 ~5; logical and
| exprt "|" expr2 ;; logical or
| expri "->" expr2 ;3 logical implication
| expri '"<->" expr2 ;3 logical equivalence
| expri "=" expr2 ;; equality
| expr1l "<" expr2 ;3 less than
| expri ">" expr2 ;; greater than
| expri "<=" expr2 ;; less that or equal
| expri '">=" expr2 ;; greater than or equal
|

exprl "+" expr2 ;; integer addition

3.2. THE INPUT LANGUAGE 109

| expri "-" expr2 ;; integer subtraction

| expri "x" expr2 ;; integer multiplication
| expri "/" expr2 ;; integer division

| expri "mod" expr2 ;; integer remainder

| "next" "(" id ")" ;; next value

| set_expr ;; a set expression

| case_expr ;; a case expression

An id. or identifier. is a symbol or expression which identifies an
object. such as a variable or defined symbol. Since an id can be an
atom. there is a possible ambiguity if a variable or defined symbol has
the same name as a symbolic constant. Such an ambiguity is flagged
by the compiler as an error. The expression next (x) refers to the value
of identifier x in the next state (see section 3.2.3). The order of parsing
precedence from high to low is

*,/
+,-

mod

->,<=>

Operators of equal precedence associate to the left. Parentheses
may be used to group expressions.
A case expression has the syntax

case_expr
"CaSe"
expr_al ":" expr.bt '";"
expr_a2 ":" expr._.b2 ";"
Ilesac(l

\\ case expression returns the value of the first expression on the
right hand side. such that the corresponding condition on the left hand
side is true. Thus. if expr.at is true. then the result is expr_bi. Oth-
erwise. if expr_a2 is true, then the result is expr_b2. ete. [f none of

110 CHAPTER 3. THE SMV SYSTEM

the expressions on the left hand side is true, the result of the case

expression is the numeric value 1. It is an error for any expression on

the left hand side to return a value other than the truth values 0 or 1.
A set expression has the syntax

set_expr ::
n{u vall u’u val?2 u’u u}u
| exprl "in" expr2 ;; set inclusion predicate
| exprl "union" expr2 ;; set union

A set can be defined by enumerating its elements inside curly braces.
The elements of the set can be numbers or symbolic constants. The
inclusion operator tests a value for membership in a set. The union
operator takes the union of two sets. If either argument is a number or
symbolic value instead of a set. it is coerced to a singleton set.

3.2.3 Declarations
The VAR declaration

A state of the model is an assignment of values to a set of state variables.
These variables (and also instances of modules) are declared bv the
notation

decl :: "VAR"
atoml ":" typet ";"
atom2 ":" type2 ";"

The type associated with a variable declaration can be either Boolean.
scalar. or a user defined module. \ type specifier has the svntax

type :: boolean

' n{u Vall u,u Val2 n,u . u}u

| atom [n(n exprl n’n expr2 ||’n n)n]

| "process" atom ["(" expri "," expr2 "," ... ")"]
val :: atom | number

A variable of type boolean can take on the numerical values 0 and
| (representing false and true. respectively). In the case of a list of

3.2. THE INPUT LANGUAGE 111

values enclosed in set brackets (where atoms are taken to be symbolic
constants), the variable is a scalar which can take any of these val-
ues. Finally, an atom optionally followed by a list of expressions in
parentheses indicates an instance of module atom (cf. section 3.2.4).
The keyword process causes the module to be instantiated as an asyn-
chronous process (cf. section 3.2.6).

The ASSIGN declaration
An assignment declaration has the form

decl :: "ASSIGN"
destl ":=" expri ";"
dest2 ":=" expr2 ";"

dest :: atom
| "init" "(" atom ")"
| "next" n(u atom ||)||

On the left hand side of the assignment. atom denotes the cur-
rent value of a variable. init(atom) denotes its initial value. and
next(atom) denotes its vaiue in the next state. [f the expression on
the right hand side evaluates to an integer or symbolic constant. the
assignment simply means that the left hand side is equal to the right
hand side. On the other hand. if the expression evaluates to a set. then
the assignment means that the left hand side is contained in that set.
[t 1s an error if the value of the expression is not contained in the range
of the variable on the left hand side.

In order for a program to be implementable. there must be some
order in which the assignments can be executed such that no-variable
is assigned after its value is referenced. This is not the case if there
15 a circular dependency among the assignments in any given process.
Hence. such a condition is an error. [n addition. it is an error for a
variable to be assigned more than once simultaneously. To be precise.
it is an error if:

L. the next or current value of a variable is assigned more than once
in a given process. or

112 CHAPTER 3. THE SMV SYSTEM

2. the initial value of a variable is assigned more than once in the
program, or

3. the current value and the initial value of a variable are both as-
signed in the program, or

4. the current value and the next value of a variable are both as-
signed in the program. or

(W1]
h

there is a circular dependency, or

6. the current value of a variable depends on the next value of a
variable.

The TRANS declaration

The transition relation R of the model is a set of current state/next
state pairs. Whether or not a given pair is in this set is determined by
a Boolean valued expression. introduced by the TRANS kevword. The
syntax of a TRANS declaration 1s

decl :: "TRANS" expr

It is an error for the expression to vield any value other than 0 or 1.
If there is more than one TRANS declaration. the transition relation is
the conjunction of all of TRANS declarations.

The INIT declaration

The set of initial states of the model is determined by a Boolean ex-
pression under the INIT keyword. The syntax of a INIT declaration
is

decl :: "INIT" expr

[t is an error for the expression to contain the next() operator.
ot to vield any value other than 0 or L. If there is more than one
INIT declaration. the initial set is the conjunction ot all of the INIT
declaratious.

3.2. THE INPUT LANGUAGE

The SPEC declaration

113

The system specification is given as a formula in the temporal logic
CTL, introduced by the keyword SPEC. The syntax of this declaration

is
decl :: "SPEC" ctlform
A CTL formula has the syntax
ctlform ::
expr ;3 a Boolean expression
| "1" ctlform ;3 logical not
| ctlformi "&" ctlform2 ;3 logical and
| ctlformi "|" ctlform2 ;; logical or
| ctlformi "->" ctlform2 ;; logical implies
| ctlforml "<->" ctlform2 ;; logical equivalence
| "E" pathform ;; existential path quantifier
| "A" pathform ;; universal path quantifier
The syntax of a path formula is
pathform ::
"X" ctlform ;5 next time
"F" ctlform ;3 eventually
"G" ctlform ;; globally
ctlformil "U" ctlform2 ;; until

The order of precedence of operators is (from high to low)

E,AX,F,G,U
]
4
I

->,<=>

Operators of equal precedence associate to the left. Parentheses
may be nsed to group expressions. It is an error for an expression in a
('TL formula to contain a next() operator or to return a value other
than O or L. [f there is more than one SPEC declaration. the specification
1s the conjunction of all of the SPEC declarations.

114 CHAPTER 3. THE SMV SYSTEM

The FAIR declaration

A fairness constraint is a CTL formula which is assumed to be true
infinitely often in all fair execution paths. When evaluating specifica-
tions, the model checker considers path quantifiers to apply only to fair
paths. Fairness constraints are declared using the following syntax:

decl :: "FAIR" ctlform

A path is considered fair if and only if all fairness constraints de-
clared in this manner are true infinitely often.

The DEFINE declaration

In order to make descriptions more concise, a symbol can be associated
with a commouly used expression. The syntax for this declaration is

decl :: "DEFINE"
atoml ":=" expri “;"
atom2 ":=" expr2 ";"

When every an identifier referring to the symbol on the left hand
side occurs in an expression, it is replaced by the value of the expression
on the right hand side (not the expression itself). Forward references
to defined symbols are allowed. but circular definitions are not allowed.
and result in an error.

3.2.4 Module§

A module is an encapsulated coltection of declarations. Once defined. a
module can be reused as many times as necessary. Modules can also be
parameterized. so that each instance of a module can refer to different
data values. A module can contain instances of other modules. allowing
a structural hierarchy to be built. The syntax of a module is as follows.

module ::
["OPAQUE"]
"MODULE" atom ["(" atoml "," atom2 "," ... ")"]
decll

decl?2

3.2. THE INPUT LANGUAGE 115

The optional keyword OPAQUE is explained in the section on identi-
fiers. The atom immediately following the keyword MODULE is the name
associated with the module. Module names are drawn from a separate
name space from other names in the program. and hence may clash
with names of variables and definitions. The optional list of atoms in
parentheses are the formal parameters of the module. Whenever these
parameters occur in expressions within the module. they are replaced
by the actual parameters which are supplied when the module is in-
stantiated. '

A instance of a module is created using the VAR declaratior !cf.
section 3.2.3). This declaration supplies a name for the instance. and
also a list of actual parameters. which are assigned to the formal pa-
rameters in the module definition. .\n actual parameter can be any
legal expression. [t is an error if the number of actual parameters is
different from the number ot formal parameters. The semantics of mod-
ule instantiation is similar to call-byv-reference. For example, consider
the following program fragment:

VAR

a : boolean;
b : foo(a);

MODULE foo(x)
ASSIGN
x = 1;

The variable a is assigned the value 1. Now consider the following
program:

DEFINE

a = 0;
VAR
b : bar(a);

MODULE bar(x)

DEFINE
a =1,
y := x;

116 CHAPTER 3. THE SMV SYSTEM

In this program. the value assigned to y is 0. Using a call-by-name
(macro expansion) mechanism, the value of y would be 1, since a would
be substituted as an expression for x.

Forward references to module names are allowed, but circular ref-
erences are not. and result in an error.

3.2.5 Identifiers

An id. or identifier. is an expression which references an object. Objects
are instances of modules. variables. and defined symbols. The syntax
of an identttier is as follows.

id ::
atom
] id "." atom

An atom identifies the object of that name as defined in a VAR or
DEFINE declaration. [f « identifies an instance of a module. then the
expression «.b identifies the component object named b of instance «.
This is precisely analogous to accessing a compouent of a structured
data type. Note that an actual parameter of module instance « can
identify another module instance h. allowing a to access components of
h. as in the following example:

VAR

a : foo(b);
b : bar(a);

MODULE foo(x)
DEFINE
c :=x.p | x.q;

MODULE bar(x)
VAR
p : boolean;
q : boolean;

tlere. the value of c is the logical or of p and q. If the kevword
OPAQUE appears before a module definition. then the variables of an in-

3.2. THE INPUT LANGUAGE 117

stance of that module are not externally accessible. Thus, the following
program fragment is not legal:

VAR

a : foo();
DEFINE

b := a.x;

OPAQUE MODULE foo()
VAR
x : boolean;

3.2.6 Processes

Processes are used to model interleaving concurrency. with shared vari-
ables. A process is a module which is instantiated using the keyword
process (cf. section 3.2.3). The program executes a step by non-
deterministically choosing a process. then executing all of the assign-
ment statements in that process in parallel. simultaneously. Each in-
stance of a process has special variable Boolean associated with it called
running. The value of this variable is 1 if and only if the process in-
stance is currently selected for execution. The rule for determining
whether a given variable is allowed to change value when a given pro-
cess is executing is as tollows: if the next value ot a given variable is
not assigned in the currently executing process. but is assigned in some
other process. then the next value is the same as the current value.

3.2.7 Programs
The svntax of an SMV program is

program ::
modulel
module?2

There must be one module with the name main and no formal pa-
rameters. The module main is the one instantiated by the compiler.

118 CHAPTER 3. THE SMV SYSTEM

3.3 Formal semantics

[n this section we assign a formal semantics to SMV programs. In
essence, a program is viewed as a system of equations whose solutions
determine the transition relation and initial states of a Kripke structure.
In fact. this semantics assigns meaning to some programs which are not
actually accepted by the compiler due to the rules regarding multiple
assignments and circular dependencies. Here, we define a semantics for -
a subset of the language which does not include the process kevword.
This subset will be called SMV.0. The semantics of SMV.0 is syntax
directed - the denotation of a program is a function of the denotations
of its syntactic components. It is also compositional with regard to
bisimulation and simulation. as we will prove in chapter 5. This makes
it possible to use compositional proof methods for verifying SMV.0
programs. including induction over the structure of programs. The
semantics for SMV. 1. which includes the process kevword. is given in
appendix A.

3.3.1 The model

The set .V of names. is the set of all character strings made up of
the letters. the digits. the underscore and the minus sign characters.
beginning with a letter. The store L = Ly U Ly is made up of two
disjoint. countably infinite sets of locations Ly and Ly. We will call
the former the wisible locations. and the latter the hidden locations.
The set of locations L is defined recursively. It is the least set such
that

l.ifne V.thenn € Ly. and

(™)

ifle Ly and n € V. then l.n € Ly. and
3. ile Ly.then .l € [y.

The set of values V" is the union of the integers in the range [—2°1. 2! — [}
and .V. the set of names. A\ stater: L — V' is a function from locations
to values. Let 8 = L — | be the set of all possible states.

[f p is a declaration. then its denotation [p] is a triple {T. [. R). The
T component is a partial function from L to the finite subsets of 1.

3.3. FORMAL SEMANTICS 119

If | is a location, then T(!), when defined, is the type of | - the set of
values that can be assigned to location [. The component I C S is the
set of initial states. Finally, the component R C S x S is the transition
relation.

In the following sections. we define the denotations of the various
kinds of declarations. We then define a composition operator || which
gives the denotation of a program in terms of its declarations.

3.3.2 Expressions

An expression denotes a tunction from states to finite subsets of V.
according to the following rules:

L. If vis a value. then [e](r) = {c}.
2. If [is a location. then [{](x) = {«({)}.
3. If e,. ¢, are expressions. and o is one of
+ = x f.mod. >.>=. <. <= = &, |.=>. <>

then
[ev 0 ex)(2) = {[o](v1. v2) | vy € {ed](x). va € [ea](x)}
4. If e is an expression. then

Del(o) = {I'Nv) | v & [e](x)}

5. If e, ¢, are expressions.

ler union €,](2) = [e,] U [e2]

o

If €1.¢> are expressions.

ler inex]te) =[] € [eo]

120 CHAPTER 3. THE SMV SYSTEM

The functions denoted by +, =, *, / are the usual functions of arith-
metic modulo 2*2. The function denoted by mod is the positive re-
mainder of division mod 2%%. The functions denoted by the relational
operators >, >=, < and <= return 0 when the relation is false and 1 when
the relation is true. and are defined for numeric values only. For non-
numeric values. theyv return L. The equality operator = is defined for
all values. and returns 0 when they are unequal. and | when they are
equal. The functions denoted by the Boolean operators are & (for and).
| (for or). ! (for not). => (for implies) and <=> (for logical equivalence)
are defined only for the values 0 and {. and return L otherwise.

3.3.3 Assignments and definitions

There is no semantic difference hetween assignments and definitions.
If [is a location. and ¢ is an expression. then the assignment [:= ¢:
denotes a triple (1. [. R). where

L.T=9
2. [=N
3. B={lrg)e St {Ur) € [e](0)}
The assignment next(!/) := ¢: denotes a triple (T.[. R) where
L.T =19
2. [=N
3. R={la.yr & 5% Uy) € [e](x)}
The assignment 1n1t(/) := e: denotes a triple (T. [. R) where

L. T =9

3.3. FORMAL SEMANTICS 121

3.3.4 Variable declarations

If [is an identifier and vy, vy, v, are values, then
VAR : {vi,v2,....0n}i

denotes a triple (T. I. R) where

T ={(L{vi.v90. ... 1)}

A ={eeS|z(l) € {v.00. .. ta})}

3. R={(r.y) e S| e(D).yll) € {vrcva, ... vn D)}

—

(V)

3.3.5 Renaming

Let o : L — L be a function fromt locations to locations. This in turn
induces a map ® on states. such that for all states + and locations [.

S()(!) = r{ofl)).
If Ml = (T.I.R). then let o(M) = (T".I'. R’} where
L. T"(a(1)) = T(I).
2. I'={c| ®(z) €[} and
3. R = {{x.y) | (®(x).P(y)) € R}.

Note that the definition of T doves not make sense if © maps two loca-
tions with different types onto the same location. I[n this case. o(M)
is a type error. There are two rules regarding the renaming function o
which must be respected to allow compositional reasoning about SMV
programs. These are:

l. A hidden location rannot he renamed to a visible location. and

2, Two distinct locations cannot be mapped to the same hidden
location.

These rules are respected by the SMV.0 semantics. Notice that it is
allowable to rename visible locations to hidden locations. In this wayv.
we can accomplish both hiding and renaming with the same operator.

122 CHAPTER 3. THE SMV SYSTEM

3.3.6 Parallel composition

The parallel composition of two processes M, ! M, is formed in two
steps. First. a renaming is applied to map the hidden locations of M,
and M, onto disjoint spaces. Then the union of the type functions T
and the intersections of the initial sets [and the transition relations
R are taken. ('learly. this does not make sense if the T components
do not agree on the type of some location, since the union would not
be a function. Formally, let M, = (T, 1,,R)) and M, = (T3, [,, R>»).
Let n;, and n, be two distinct names. For : € 1,2, let o,({) = .n;.{ for
all l € Ly and &;(!) = { otherwise, and let M = o(M;). The parallel
composition M = M, || VW, is defined as follows:

L.T=TUT,

2 I=01N1

3. R=R\NRA,
If dy,d;,....di are declarations. then [d, d» ... di] is the parallel
composition

[ad f| [d2] 1 - - -) (il

3.3.7 Instantiation

Suppose that module 4 is defined as follows:
MODULE A(ny,na,....nx) D

where ny.ny. n, are distinct names and D is a sequence of declara-
tions. Let r.[,.{,,.... [be visible locations. Let ¢ be a renaming. such
that. for all [€ Ly.

l. forall | <:<4k: o(n,) =1, and o(n;.l) = 1.1,
2 foralln e V~{ny.ny....nc}, o(n) = ~n.and o(n.d) = r.n.l

3. 0(l) =0

3.3. FORMAL SEMANTICS 123

Then [VARr : A(l,12,....[k);]} = o(D).
On the other hand. suppose that A is defined as follows:

OPAQUE MODULE A(ny,ns,...,nk) D

where n, no, ..., n are distinct names and D is a sequence of declara-
tions. Let r. .y, lh..... [be visible locations. Let my and m, be distinct
names in V. Let o be a cenaming. such that, for all { € Ly,

[. forall 1 <:i<k: oln;) = (. and o(n;.l) = (.1,

2forall n € NV = {ni.ny..... e}, o(n) = my.n. and o(nld) =

.,
3. o) = .mo.d
Then {IVAR" : .{(!1‘12,..../;\-):H :1){[)‘}.

3.3.8 Specifications

Each program is associated with a Kripke structure which determines
the truth value of ('TL formulas in the specification. The atomic propo-
sitions in this case are all the Boolean valued expressions. The Kripke
structure associated with a program whose denotation is the triple

(T.I.R) is a kripke model A" = (5. R. L) where
l. 5 is the set of states defined above,
2. R is the transition relation. and

3. if e is an expression. then
L'(er={re 5| [el(x)={1}}

The specification is a tormula [in C'TL with fairness constraints. It is
satisfied exactly when A5, = f for all sy € [.

124 CHAPTER 3. THE SMV SYSTEM

Chapter 4

A Distributed Cache
Protocol

In this chapter, we look at an application of the SMV symbolic model
checker to a cache consistency protocol developed at Encore Computer
("orporation for their Gigamax distributed multiprocessor [MS91L]. This
protocol is of interest as a test case for automatic verification for two
reasons. First. it is not a theoretical exercise, but a real design. which
is driven by considerations of performance and economics. as well as
the usual constraints of industrial design. such as compatibility with
existing hardware and software. Second. this protocol is a good example
of a system where random simulation methods are ineffective in finding
clesign errors.

The Gigamax is a distributed. shared memory multiprocessor. in
which the processors are grouped into clusters. Each cluster has a local
bus. and uses bus snooping [AB36] to maintain cache consistency within
the cluster. In addition. each cluster has an interface called a UIC'
which links the cluster into a network. The UIC keeps the caches in the
cluster consistent with the rest of the network by acting as both a bus
snooper and a bus master on behalf of the remote clusters. using a table
which keeps track of the remote status of all cache blocks from the local
main memory. [his allows it to intervene in bus transactions which
affect remotely owned blocks. and to send appropriate invalidation or
call back requests to the network. The network is organized into a
hierarchy, as depicted in figure L.1. The global bus. at the top of the

125

126 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

global bus

uic |

UIC UIC

cluster bus

M| |P||P] -- M| |P||P] -

Figure 4.1: Gigamax memory architecture

hierarchy. has one UIC connected to each cluster. These UICs record
the status of all cache blocks which are present in the corresponding
cluster. This eliminates the need for directory pointers in main memoryv.
at the possible expense of a bottleneck in the global bus.

Protocols such as this are difficult to debug using simulation. in part
because the order of events such as cache misses and message arrivals
in various parts of the system is unpredictable. Subtle errors some-
times require a long sequence of such events to manifest themselves.
Since the number of such sequences is combinatoric, the probability of
such a sequence occurring in a random simulation rapidly vanishes as
the sequence length increases. Nevertheless. for the design process to
stabilize. it is necessary to provide timely information about errors to
the design team. since the greater the delay in discovering an error. the
greater is the disruption required to fix it. Ideally. a protocol should be
error free before a hardware (or software) implementation is considered.
Otherwise. the options for fixing the errors will be greatly limited by
cost considerations. and the likelihood of the design change introducing

4.1. THE PROTOCOL 127

other errors will be high.

For this reason, we will consider the verification of the Gigamax
protocol at a high level of abstraction. neglecting many admittedly
important details of the implementation, such as the widespread use
of pipelining, or the link level protocol that communicates messages
between clusters. The basic method for building an abstract model
of a protocol is to introduce nondeterminism in those cases where the
level of detail of the model is insufficient to uniquely determine the
outcome of an event. or where design decisions have been left open.
We will make a note of places in the model where nondeterminism has
been used in this way. and in what way the state of an implementation
might correspond to the state of the abstract model.

4.1 The Protocol

The purpose of a cache consistency system is to provide the illusion
to the programmer of a distributed computer that all processors in
the system have access to a shared global store. This illusion must
he provided despite the fact that the physical storage is distributed.
To reduce the latency of access to the distributed main storage. each
processor is provided with a local cache - a semi-associative store. which
holds a collection of memory blocks recently used by the processor. The
time required to access to this store is less than to access main storage.
An access to a memory block stored in the cache is called a hit. while
an access to a memory block not stored in the cache is called a miss.
A miss requires an access to main storage (which mav be remote). to
retrieve the required memory block and enter it in the cache. This may
result in the replacement ot another block in the cache. to make room
for the block being entered in the cache. If the replaced block has been
modified while in the cache. it must be returned to main storage. This
is called a copy back operation.

The first cache consistency protocols for multiprocessors were called
bus snooping protocols [AB86]. Thev required that the processors in
the system be connected by a bus. or other broadcast medium. [n a
bus snooping svstem. each time a memory access occurs over the bus.
all of the caches are checked to determine whether they contain the

128 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

addressed block. If the block is present in a cache, a change in status
may be required. For example, if the block is present and modified, the
access must be stalled while the modified data are copied back to main
storage. In a more sophisticated protocol, the cache with the modified
data may supply the data directly to the requesting cache, without the
intermediary of main storage. In case of a memory access caused by
an attempt to modify the data, all caches in which the block is present
must invalidate. that is. remove the block from cache storage. This
insures that all cached copies of the block remain consistent.

The Gigamax protocol uses bus snooping techniques to maintain
consistency of the caches within a single cluster. The main difference
between the Gigamax snooping protocol and those described in [AB36]
is that the Gigamax uses a split transaction bus. This means that a
processor accessing memory over the bus first places a request on the
bus, and then frces the bus for other transactions while awaiting a
response. The bus snooping technique is not practical for large scale
multiprocessors. because the broadcast medium quickly becomes satu-
rated. For this reason. the Gigamax uses a message passing protocol to
maintain censistency between clusters. The split transaction bus pro-
tocol allows trathc to continue on the bus while messages are in transit
in the network.

The terminology used in the sequel is changed somewhat from the
Encore terminology. and the protocol is somewhat simplified to make
the presentation clearer. The basic protocol is preserved. however. in-
cluding a subtle error which was discovered by the SMV system. The
following is a description of the protocol. first in English. then in the
SMV input language. I[n the model. we consider only the status of a
single memory block. This is our first use of abstraction. and results in
nondeterminisimn in several places in the model.

4.1.1 Processors

Each memory block stored in each cache has an associated state. which
can be either invalid. shared. or owned. Alternative names for these
states would be absent. present. and modified. respectively. The shared
state indicates that there may be other processors which have this block
stored in their cache. Therefore. a block in the shared state can be

4.1. THE PROTOCOL 129

read by the processor, but not written. since writing might result in an
inconsistency hetween two caches. The owned state indicates that no
other processors have this block in their cache, and that the data in the
cache have been modified. Therefore, a block in the owned state can
be both read and written by the processor. The invalid state indicates
that the block is not present in the cache. Therefore. the block cannot
be read or written by the processor.

MODULE cache-device

VAR
state : {invalid,shared,owned};

DEFINE
readable := ((state = shared) | (state = owned)) & !waiting;
writable := (state = owned) & !waiting;

The split transaction bus snooping protocol works in the following
way. At each bus cvcle. the bus arbiter chooses a processor among the
requesting processors to be the bus master. The remaining processors
ave referred to as slaves. The master issues a command on the bus. of
which there are three basic types. A read command is a request for a
given memory block, and is answered by a response command. \ write
command stores data in main memory. The write and response com-
mands can be combined into a single command called a write-response.
which has the simultaneous effect of supplying data to a requester and
storing it in main memory. Fach command also signals the next state
that the bus master will enter. Thus. a read-owned command indicates
that the bus master intends to modify the data. and a read-shared in-
licates that it does not. \ write-shared indicates that the bus master
is writing data. but maintaining a shared copy. while a write-invalid
indicates that 1t is not keeping the block (eg.. it is replacing it with
another bhlock). The basic commands. and their uses are summarized
in table 4.1. We note that no external command is required to go trom
the shared state to the invalid state. This occurs when a shared block
is removed to make room for another block in the cache. Since our

130 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

model does not contain the states of any other blocks, we allow this re-
placement to occur nondeterministically, at any time. Thus we model
any possible cache replacement policy.

A slave, observing a command on the bus, may decide to modify its
state. For example, a slave observing a read-owned command changes
its state to invalid, since the bus master, entering the owned state, will
assume it has the only cached copy of the block. Correspondingly, a
slave in the owned state observing a read-shared command will change
to the shared state. A special command called invalidate is used to
invalidate all caches in the system. A slave observing this command
changes to the invalid state.

ASSIGN
init(state) . := invalid;
next(state) :=
case
abort : state;
master :
case
CMD = read-shared : shared;
CMD = read-owned : owned;
CMD = write-invalid : invalid;
CMD = write-shared : shared;
1 : state;
esac;
'master :
case
CMD = read-owned : invalid;
CMD = invalidate & !waiting : invalid;
CMD = read-shared & state = owned : shared;
state = shared & !waiting : {shared,invalid};
1 : state;
esac;
es8ac;

On receiving the command. each slave checks its own cache and
indicates the state of the block in its own cache by asserting the signals
reply-owned. and reply-waiting on the bus. These are wired or signals.
meaning that the signal is observed to he asserted on the bus if one or

4+.1. THE PROTOCOL 131
| from state command | to state | cause B

invalid ~ read-shared shared read miss

invalid read-owned owned write miss

or shared

owned write-invalid invalid copy-back

owned write-resp-invalid | invalid | snoop read-owned
owned write-shared shared write-through
owned | write-resp-shared invalid | snoop read-shared

Table 4.1: Summary of commands

more caches assert the signal. The replv-owned signal is asserted by a
slave when the block is in the owned state in the slave’s cache. Reply-
waiting is asserted when the slave has previously requested the block.
and is waiting for a response. This signal will be discussed in more
detail shortly. The process ol looking up the slave’s state and signaling
on the bus is known as bus snooping. On observing a read command. a
slave in the owned state sets a flag called snoop. This causes the cache
to issue a write-response at a later bus cvcle, supplying the data to the
requester. and simultaneously storing it in main memory. When this
happens. the snoop flag is reset.

An additional reply signal called reply-stall may be asserted by auy
slave. including main storage. if the slave it not ready to respond to the
command because some resource is busy. If reply-stall is asserted. the
command is nullified.

DEFINE
reply-owned := state = owned;

VAR
snoop : boolean;

ASSIGN
init(snoop)
next(snoop)

]

0;

132 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

case
abort : snoop;
state = owned & CMD = read-shared : 1;
state = owned & CMD = read-owned : 1;
CMD = response : 0;
CMD = write-resp-invalid : O;
CMD = write-resp-shared : O;
1 : snoop;
esac;

After issuing a read command. the master releases the bus and waits
for a response. During this time. a flag called waiting is set. Normally.
if no slave asserts reply-owned. the response comes from main memory.
If any slave asserts reply-owned. however. main memory is inhibited.
allowing the slave to supply the data at a future cycle with a write-
response command.

MODULE bus-device

VAR
master : boolean;
cmd : {idle,read-shared,read-owned,cty-read,write-invalid,
write-shared,write-resp-invalid,urite-resp-shared,
invalidate,responsel;
waiting : boolean;
reply~stall : boolean;

ASSIGN
init(waiting)
next(waiting) :

case
abort : waiting;

0;

master & CMD = read-shared S I
master & CMD = read-owned D1,
CMD = response : 0
CMD = write-resp-invalid : 0;
CMD = write-resp-shared : 0;

1 : waiting;
esac;

4.1. THE PROTOCOL 133

A slave which is waiting for a given cache block responds to any
read command for that block by asserting reply-waiting. This nullifies
the read command and forces the master to retry at a later cycle.

DEFINE
reply-waiting := waiting;
abort := REPLY-STALL
| ((CMD = read-shared | CMD = read-owned)
& REPLY-WAITING);

The commands which may be issued by a processor when it is bus
master are a function of the state. For example, if the snoop flag is
set. the processor m.y issue a write-response on the bus. From the
owned state. a pr cessor may issue a write-invalid command in order
to replace th- cache block with another. A processor in the shared state
may issur a read-owned in case of a write miss. and a processor in the
invalid state may issue either a read-shared or a read-owned command.
in case of a read miss and write miss respectively.

MODULE processor(CMD,REPLY-OWNED,REPLY-WAITING,REPLY-STALL,DATA)
ISA bus-device
ISA cache-device

ASSIGN
cmd :=

case
master & snoop & state = invalid : write-resp-invalid;
master & snoop & state = shared : write-resp-shared;
master & state = owned & !waiting : write-invalid;
master & state = shared & !'waiting : read-owned;
master & state = invalid : {read-shared,read-owned};
1 : idle;

esac;

4.1.2 The local UIC interface

The UIC is the interface from one cluster to another. ['ICs come in
pairs. connected by a communication link. A UIC is said to be local

134 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

for a given memory block if that block is found in main storage on the
same side of the link as the UIC. It is said to be remote if the memory
block is found in a main memory on the other side of the link. Thus,
for any memory block, one of the UICs in the pair is local, and the
other remote. The UIC determines whether it is local or remote by
address decoding. We consider the local case first. In this discussion.
local refers to any part of the system on the bus side of the UIC, and
remote refers to any part of the system on the link side of the UIC.

Viewed from the bus, the UIC behaves like a processor. with the
capability ¢o issue and respond to commands. The UIC’s cache records
the state (but not the data) of all blocks of the local main storage that
are present in remote caches. This allows the UIC to snoop the bus on
behalf of remote caches. The UIC performs this function in exactly the
same manner as the processors. The state of a block in the UIC changes
with commands issued in the same manner as the state of cache blocks
in processor caches.

The UIC receives command messages from from the link. and stores
them in one of two queues. The low priority queue is for read com-
mands. and the high priority queue is for all other commands. The
depth of the queues is arbitrary. but for now. we consider queues of
only one entry. A command in one of the queues is issued on the bus
when the UIC becomes master. If both queues are non-empty. the
command in the high priority queue is issued first. Provided the com-
mand is not aborted. the queue issuing the command is emptied. Since
the UIC becomes bus master at nondeterministic intervals. the delay
between the time a message arrives in the queue and is issued on the
bus is arbitrary. This nondeterminism covers two abstractions made in
the model. First, it allows for any amount of latency in the link level
protocol, which is not modeled. Second. it allows the time to issue
an arbitrary number of messages relating to other memory blocks that
may be queued ahead of the one message that is modeled.

MODULE receiver
VAR :
hiq : {none,response,write-shared,write-resp-shared,
write~invalid,write-resp-invalid,invalidate};
loq : {none,read-owned,read-shared,cty-read};

4.1. THE PROTOCOL 135

ASSIGN
cmd :=
case
master & !(hiq
master & !(loq
1 : idle;
esac;
init(hiq) := none;
next(hiq)
case
'master | abort : higq;
1 : none;
esac;
init(loq)
next(loq)
case
'master | abort | !'(hiq = none) : log;
1 : none;
esac;

none) : higqg;
none) : log;

none;

1}

The local UIC can send commands to the link in response to com-
mands observed on the local bus. Whenever a read command is sent
to the link. it is entered in the remote UIC’s low priority queue. [f any
other command is sent to the link. it is entered in the remote UI("s
high priority queue. [f the remote queue is full. the local bus cycle is
stalled.

MODULE sender

DEFINE
lopri := sending in {read-shared,read-owned,cty-read};
hipri := sending in {invalidate,response,write-shared,
write-invalid,write-resp-shared,write-resp-invalid};
ASSIGN
next(remote.hiq) :=
case

'abort & remote.hiq = none & hipri : sending;
1 : remote.hiq;
esac;

136 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

next(remote.loq) :=
case
!abort & remote.loq = none & lopri : sending;
1 : remote.loq;
esac;
reply-stall :
(hipri & !(remote.hiq
lopri & !(remote.loq

none) |
none)) union 1;

The local UIC sends command messages to the link in two cases.
The first is to invalidate or call back cache blocks in remote caches.
This occurs when the UIC is a slave and a read-owned or read-shared
is received on the bus. If the UIC is in the owned state. the read-
owned or read-shared is forwarded to the link. This causes the remote
cache in the owned state to issue a write-resp-invalid or write-resp-
shared. returning the cache block to the local bus. If the UIC is in the
shared state. and a read-owned is received on the bus. an invalidate
command is forwarded to the link. This causes all remote caches to
go to the invalid state. Note that this mayv allow a processor on the
local bus to write before the invalidate command has reached all re-
mote caches. This is a possible violation of strict consistency, which is
tolerated for performance reasons. Hence. the protocol does not imple-
ment a strongly consistent memory model. The memory model which
the protocol does support will be discussed in more detail in the next
section.

The second case in which the local UI(sends a command to the link
is when the UIC has issued a read-shared or read-owned and is waiting
for a response. In this case. if the UI(' is a slave and a response. write-
resp-shared. or write-resp-invalidate is asserted on the bus. a response
is sent to the link.

MODULE local~-UIC(remote,CMD,REPLY-OWNED,REPLY-WAITING,
REPLY-STALL,DATA)

ISA bus-device

ISA cache-device

ISA receiver

ISA sender

1.1. THE PROTOCOL 137

DEFINE
sending :=

case
master : none;
CMD = read-shared & state = owned : read-shared;
CMD = read-owned & state = owned : read-owned;
CMD = read-owned & state = shared : invalidate;
CMD = write-resp-invalid & waiting : write-resp-invalid;
CMD = write-resp-shared & waiting : write-resp-shared;
CMD = response & waiting : response;
1 : none;

esac;

4.1.3 The Remote UIC interface

When the UIC is remote. it hehaves as if it were a main storage
device. It accepts read-shared. read-owned. write-shared. and write-
invalid commands from the bus. aud forwards them to the local UIC
via the link. When the response arrives in the high priority queue. it
issues the response on the bus. I[n addition. it can provide a special ser-
vice to caches on the local side. If the remote UIC issues a read-shared
or read-owned command. and there is no reply on the remote bus (e..
no slave asserts reply-owned). it is assumed that the block was copied
back to main storage while the read command was in transit. The
remote UIC therefore sends the read command back to the local side.
This operation is called a courtesy read. The courtesy read will cause
the main store on the local bus to respond to the original requester.

MODULE remote-UIC(remote,CMD,REPLY-OWNED,REPLY-WAITING,
REPLY-STALL,CATA)

ISA bus-device

ISA receiver

ISA saender

DEFINE
sending :=
case
master :

138 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

case
CMD = read-shared & 'REPLY-OWNED : cty-read;
CMD = read-owned & !REPLY-OWNED : cty-read;
1 : none;
esac;
‘master :
case
CMD = read-shared & !REPLY-OWNED : read-shared;
CMD = read-owned & !REPLY-OWNED : read-owned;
CMD = write-resp-invalid & waiting : write-resp-invalid;
CMD = write-resp-shared & waiting : write-resp-shared;
CMD = write-resp-shared & !waiting : write-shared;
CMD = write-shared : write-shared;
CMD = write~invalid : write-invalid;
1 : none;
esac;
esac;
reply-owned := 0;

The text for the complete model in the SMV language includes
such details as an abstracted model of main storage and the cluster
bus. which ties the above modules together. These are omitted here.
Each cluster is modeled as an asynchronous process. Hence. the early
quantification method for disjunctive relations can be used to avoid
constructing the global transition relation (cf. section 2.1.2).

4.1.4 Protocol example

As an example of the protocol in operation. consider the sequence of
events depicted in figures 1.2 and 4.3. In the figures. clusters | and 2 are
both remote (ie.. the memory block in question resides in some other
cluster). The sequence begins when a read miss occurs in a processor
in cluster 2, while a processor in cluster 1 is in the owned state. At this
point. the following sequence of events might occur:

1. The processor in cluster 2 issues a read-shared command on the
bus. and sets its waiting tlag.

4.1.

o

10.

L1

THE PROTOCOL 139

The UIC in cluster 2 sends the read-shared command up the
link, storing it in the low priority queue of the global bus UIC for
cluster 2.

The global bus UIC for cluster 2 issues the read-shared command
on the global bus, entering the shared state, and setting its wait-
ing flag.

Since the global bus UIC' for cluster | is in the owned state, it
asserts reply-owned. sends the read-shared command down the
link to cluster 1. enters the shared state, and sets its snoop flag.

. The UIC in cluster | issues this read-shared command. entering

the shared state aud setting its waiting flag.

. The processor in cluster | in the owned state asserts reply-owned.

enters the shared state. and sets its snoop flag.

. The processor in cluster | issues a write-resp-shared command.

containing the block data. and clears its snoop flag.

The UIC in cluster | sends the write-resp-shared command up
the link, storing it in the high priority queue of of the global bus
UTC for cluster 1. and clears its waiting flag.

The global bus UIC for cluster 1 issues the write-response-shared
command on the global bus. and clears its waiting flag.

(a) The global bus UI(' connected to main memory sends a write-
shared command containing the block data and (b) The global
bus UIC for cluster 2 sends a response command. clearing its
waiting flag.

The UIC in cluster 2 issues the response command.

The requesting processor in cluster 2 stores the data in its cache.
and clears its waiting flag.

140 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

global bus
initially own uic
4r edply ~own edb?sserted " 3) read-shared issued
gl ;eeg‘;#:o p'c ->shared, waiting
5) read-shared issued '
->shared, waiting uic uic
cluster bus 2) sends read-shared
M|IP]||P] - M||P||P
1) read miss
initially own ;
6) reply-owned asserted ’53"’795 r 33 d-shared
sends read-public ->shared, waiting
-> shared,snoop

Figure 1.2: Protocol example

global bus

10b) sends write-shared

<+ to main memory
'9) issues write-resp n n n r
-> shared, clear snoop ng?t)msge Cgsa;ggp onse to requeste
8) sends write-resp uIC
waiting cleared ,

cluster bus 11) issues response
7) issues write-resp 12)waiting cleared

->shared, clear snoop

Figure 4.3: Protocol example {cont.)

4.2. VERIFYING THE PROTOCOL 141

4.2 Verifying the protocol

We now consider the problem of formal specification and verification of
the protocol. The properties we will be concerned with are:

{. tfreedom from deadlock.

t
.

sequential consistency. and
3. local safety conditions. related to diagnostics.’

Using the symbolic model checking technique. we can verify these prop-
erties automatically, despite the very large state space of the model. In
fact. the model checker discovered a fairly subtle bug in the protocol -
an execution sequence leading to a deadlocked state.

4.2.1 Freedom from deadlock

We will say that the protocol is deadlocked if it reaches a state in
which some processor is permanently blocked from receiving access to
the given memory block. Thus. our definition of deadlock takes in situ-
ations that might also be called livelock. in which the systemn continues
to loop infinitely, but without the possibilityv of making progress. We
can express this property in CTL with the following formula. which
must hold for all processors:

ACGUE F readable A E F writable) i4.1)

[n other words. it it alwavs possible that the memory block will be-
come readable by the given processor. and always possible that it will
become writable. We can check this property using SMV by adding the
following specification to the processor module:

SPEC
AG(EF readable & EF writable)

The specification turns out to be false. and as a counterexample.
the model checker produces an execution trace leading to a deadlocked
state. This is an actual bug in the original protocol which was found by

142 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

the model checker, but not in behavioral simulations. The complexity
of the counterexample, and the unusual sequence of events that leads
to the deadlock should give some indication of why this error would
be unlikely to occur in random simulations. The time required to pro-
duce the counterexample was slightly under ten minutes running on a
Sun 3/60.

The steps of the counterexample are depicted in figures 4.4 to 4.6.
Cluster 1 is the local cluster, and clusters 2 and above are remote
clusters. We pick up the counterexample at a point where a processor
in cluster 2 is in the owned state:

1. A read miss occurs in a processor in cluster [. This processor
issues a read-shared command on the bus. It enters the shared
state and sets its waiting flag.

o

Since the UIC in cluster 1 is in the owned state. it asserts reply-
owned, enters the shared state. and sends a read-shared command
up the link. storing it in the low priority queue of the global bus
UIC for cluster 1.

3. A processor in cluster 3 also issues a read-shared command. As
a result. the global bus UIC for cluster 3 issues the read-shared
command on the global bus. entering the shared state. and setting
its waiting flag.

1. Since the global bus UIC for cluster 2 is in the owned state. it
asserts reply-owned. sends a read-shared command down the link
to cluster 2. enters the shared state. and sets its snoop flag.

5. The UIC in cluster 2 issues this read-shared command. entering
the shared state and setting its waiting flag.

6. The processor in cluster 2 in the owned state asserts replv-owned.
enters the shared state. and sets its snoop flag.

. The processor in cluster 2 issues a write-resp-shared command.
containing the block data. and clears its snoop tlag.

4.2. VERIFYING THE PROTOCOL 143

8. The UIC in cluster 2 sends the write-resp-shared command up
the link, storing it in the high priority queue of of the global bus
UIC for cluster 1, and clears its waiting flag.

9. The global bus UIC for cluster 2 issues the write-response-shared
command on the global bus. and clears its waiting flag.

10. {a) The global bus UIC connected to main memory (cluster 1)
sends a write-shared command containing the block data and (b)
The global bus UIC for cluster 3} sends a response command.
clearing its waiting flag.

11. The UIC in cluster | issues the write-shared command.
12. The block data are stored in main memory.

13. A processor in cluster 3 again issues a read-shared command. As
a result, the global bus UIC for cluster 3 issues the read-shared
command on the giobal bus. entering the shared state. and setting
its waiting flag.

l4. Since read-owned is not asserted. the UIC for cluster 1 sends the
read-shared command down the link towards main memory.

At this point. the system is deadlocked. - The original read-shared
command sent in step | in cluster 1 is still in the low priority queue
at th global bus level. but is stalled by the waiting flag set in the
global UIC for cluster 3. Similarly. the read-shared command sent by
cluster 3 is in the low priority (ueue in the cluster [UIC. but is stalled
by the waiting flag of the original requester. This is an example of the
classic deadlock situation which occurs when two processes attempt
to obtain locks on two resources {in this case two buses) in different
orders. Nonetheless. the sequence of events that lead to this situation
were sufficiently complex that the designers did not anticipate that the
situation could occur. and simulations did not produce it. In tact. the
deadlock situation was found at a search depth of thirteen transitions.
At each step in this sequence. there were several alternatives that might
have averted the deadlock. Thus it is possible. but unlikelv that this

144 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

initially owned
4) reply-owned asserted
sends read-shared
-> shared, snoop
global bus .~
uic _
3) read-shared issued.
initially owned ->shared, waiting
2) asserts reply-owned
sends read-shared .
->shared, snoop uic UIC 5) read-shared issued
cluster bus waiting set
EE- WER
1) read miss initially owned
issues read-shared 6) reply-owned asserted
->shared, waiting ->shared, snoop

Figure 4.1: Deadlock example

global bus

10a) sends write-shared 10b) sends response
to main memory UIC - clears waiting
9) issues write-resp
clears snoop
11) issues write-shared uic UIC g) sends write-resp
cluster bus 7 clears waiting

MEE- MEE-

12)stores data 7) issues write-resp
clears snoop

Figure 1.53: Deadlock example {cont.)

4.2. VERIFYING THE PROTOCOL 145

giobal bus
14) sends read-public 13) issues read-shared
to main memory UIC « -> shared, waiting
read-shared still *~~
pending
can't issue read-public uiC
cluster bus
waiting still set

Figure 4.6: Deadlock example (cont.)

deadlock would bhe found by a random simulation run. or a simulation
run based on address traces.!

The fact the the model checker was able to print out automatically
an example of this deadlock highlights an important practical aspect
of the technique. Counterexamples are of perhaps even greater value
than a proof that the system is correct, since such a proot is based on
the assumption that the system is correctly modeled. and the specifica-
tion is correct and complete. .\ counterexample. however. provides an
important clue as to where a bug in the system lies. and how it might
be corrected.

4.2.2 Correcting the deadlock

The problem causing the deadlock is that the remote owner of the
memory block can write the data back to main memoryv while a read

In fact. the number of possible transitions from a given state ranges from 6 to
12. The probability of a random simulation run executing this trace is therefore
in the range 6='3 = 7.7 <« 10~ 10 12713 = 9.3 x 10~ '®. The expected time for a
random simulation to exhibit this behavior would he somewhere between 2.1 years
and 29 millenia, assuming the simulation could be carried out at 10.000 steps per
second.

146 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

command from the local cluster is in transit to the remote cluster. The
write command crosses the read command in the mail, so to speak. A
remote request for the same block can then lock the global bus, leading
to deadlock. The Encore engineers corrected the deadlock problem in
the following way. The write command. when it reaches the local bus.
is converted by the UIC into a write-response command. This supplies
data to the local requester and frees the local bus. Unfortunately. it
also leaves an orphan read command in the svstem. If a read command
from the remote side is issued on the local bus. and a remote proces-
sor subsequently reaches the owned state. the orphan read command
will disrupt th protocol. To prevent this. when the orphan read is is-
sued. it is converted to a special command called echo-response. which
1s sent back to the local cluster. The UIC in the local cluster stalls
any commands on the local bus until the echo-response arrives. thus
guaranteeing that the orphan read command is destroyed.

The corrected model satisfies the absence of deadlock specification.
The performance of the SMV model checker in verifying this is plotted
in figure 4.7. for a model with 2 clusters. as the number of caches in
each cluster is increased from 2 to 6 (thus. in the largest model. there
are 12 caches and 4 UICs). Part (a) shows the run time as a function of
the number of caches per cluster. Part {b) shows the number of OBDD
nodes used overall. and for representing the transition relation. Part
(c) shows the number of reachable states of the model. Although the
run time points are well fit by a quadratic curve. the actual asymptotic
performance is most likely cubic. as in the case of the svnchronous
arbiter (cf. section 2.4.1). owing to lincar increases in the transition
relation size. the number of fixed point iterations and the size of the
OBDDs representing fixed point approximations.

Since the number of bus wires running between successive caches
is fixed. we can apply theorem 7 to show that the transition relation
OBDD size must grow linearly in the number of caches. The fact that
the fixed point approximation OBDDs also grow linearly bears further
examination. however. This phenomenon can be understood by consid-
ering the nature of the protocol. Imagine cutting a cluster bus in hall.
and consider how much information must be communicated from one
half of the bus to determine whether a given state of the svstem is in
the reachable set or not. In fact. this amount is fixed. independent of

4.2. VERIFYING THE PROTOCOL 147

the number of caches on the bus, since we need only know if there are
any caches in the shared state or the owned state on the other side of
the cut, and not in particular which caches these are or how many. As a
result, the number of OBDD nodes (representing the reached state set)
at the level corresponding to our cut is bounded.? This is characteristic
of bus snooping protocols. and other protocols which are “loosely cou-
pled”, in the sense that one half of the system has bounded knowledge
of the state of the other half of the system.

As part (c) of the figure shows. the number of states of the svstem
increases exponentially with the number of caches per cluster. De-
spite this, the performance of the symbolic model checking algorithm
is polynomial. Thus, for this particular model and specification. we
have solved the state explosion problem.

4.2.3 Sequential consistency

When writing a formal specification tor the Gigamax cache consistency
protocol. we need to consider the model of a distributed memory which
the Gigamax provides to the programmer. As mentioned previously, for
performance reasons the protocol does not maintain strict consistency
of the caches. A cache block in the shared state may be out of date
for a short time while an invalidate message is traversing the network.
This is tolerated, since maintaining strict consistency would require an
acknowledgment of invalidation to be collected from all caches in the
shared state before a cache block could be modified.

There are a number of distributed memory models that may be
supported by such a svstem. A totally ordered model is one in which
all processors observe all values written to the memory in the same
order. For example. in a totally ordered model. if the processors write
into a location the sequence of values 1,2.3,.... then all processors
which read the location will observe any new values to be greater than
or equal to all previous values. We will show that the Gigamax protocol
has this property. for a one block system. In a partially ordered model.
values written may in some cases be observed in a different order by
different processors. Some guarantee of ordering is usually made. For

For other applications of this kind of argument. see [Bry91].

148

{c)

CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

—900
S 800
@

5 700}
£600
§500f
S 400
QO

® 300
W 200
100

L

L Il - L 1 J

0

OBDD nodes used

250000

200000

150000

100000

50000

0

1x10"
1x10"
1x10"
1x10"
1x10"

1x10°

Reachable states

1x10°
0

1 2 3 4 5 6

Caches per Cluster

o—o Total, 2 clusters
o——8 Transition relation, 2 clusters

=

; I3 = > .= —£]
2

3 4 5 6
Caches per Cluster

S

1 2 3 4 5 6
Caches per Cluster

Figure 1.7: Performance for checking deadlock

4.2. VERIFYING THE PROTOCOL 149

example, all writes must be observed in the same order relative to
special synchronization operations, or all writes by the same processor
must be observed in the same order. The latter model is supported
by the Gigamax protocol for writes to different cache blocks. Since
our model of the protocol only describes the behavior one cache block,
however, the model cannot be used to check this property.

Returning to the problem of total ordering of writes to the same
block, it might seem at first that there is no “finite state” description
of a protocol that writes an unbounded sequence of values. We can
check the property, however. by using an abstraction. We do this by
choosing a value n, and storing in the model only one bit of information
- whether the data value is less than n or greater than or equal to n.
We then assume that the processors never write a value less than n
after a value greater than n has been written. and we show that a
processor never reads a value less than n after reading a value greater
than n. Since the value of n is arbitrary, it follows that all processors
read data values in non-decreasing order. satisfying the total ordering
requirement. We now consider how to model the system using this
abstraction. For each cache. we introduce a variable whose value is
0 when the data value is less than n and 1 when the date value is
greater than or equal to n. This variable may change whenever the
block is writable. but may only change from 0 to L. since we assume
the processors only increase the data value. The following SMV code
models the data held in the processor’s cache:

MODULE data-device

VAR
data : boolean;
ASSIGN
next(data) :=
case
'master & waiting & CMD in {response,write-resp-invalid,
write-resp-shared} : DATA;
writable : data union 1;
1 : data;
esac;
DEFINE

data-enable := master & CMD in {response,write-resp-invalid,

150 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

write-resp-shared,write~invalid};

Additionally, we introduce variables to represent the values on the
buses and the values in the high priority message queues. The low
priority queues hold only requests, which have no data value.

We would now like to prove that this abstract model of the data
path of the protocol satisfies the following specification in CTL. for all
processors:

AG[(readable A data > n) = AG=(readable A data < n)) (1.2)

In other words. if ever a value greater or equal to n is ohserved. a value
less than n is never observed in the [uture. We can check this using
SMV by adding the following specification to the processor module:

SPEC
AG(readable & data -> AG (readable -> data))

Figure 4.8 shows the performance of the symbolic model checking
algorithm in verifving this formula. again for a model with 2 clusters.
Part (a) of the figure shows the execution time. while part (b) shows
the amount of storage used. Notice that although the execution times
are roughly ten times those obtained for the model without data. thev
are still cubic in the number of processors per cluster.

4.2.4 Correctness of diagnostics

In addition to the above specifications. it was also particularly useful
to check that the diagnostics built into the protocol never flagged an
error under normal operation of the protocol. Errors are flagged by the
diagnostic svstem in each processor subsvstem whenever a commani
is observed on the bus which is inconsistent with the processor’s local
state. Determining which command/state combinations are normal.
and which are errors is difficult. and a number of errors of this type
were found in the protocol using the model checking technigue.

4.2. VERIFYING THE PROTOCOL 151

260001
]
»Hn50001
)
E 40007
c
23000}
=3
Q .
£2000F
w
1000}
0 1 2 3 4 5 6
(a) Caches per Cluster
g 5000001
b o]
3
§ 400000 Total
o o-—-=a Transition relation
< 300000
(@]
@ _
& 200000
100000 o
————fi———f———fy- & ol
0 1 2 3 4 5 6
(b) Caches per Cluster

Figure £.8: Performance for checking sequential consistency

152 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

4.3 Ewvaluation

In verifying the Gigamax model with respect to the formal specifi-
cations, the symbolic model checker was able to perform an exhaus-
tive search of the model’s state space without explicitly constructing
the global state graph. As a result. the state explosion problem was
avoided. In addition, the model checker exposed a number of subtle
errors in the design that were not found in simulation. These errors
were usually caused by events (eg.. cache misses and message arrivals)
occurring out of the normal sequence anticipated by the designers. This
type of error is difficult to find in random simulations. since the prob-
ability of a given sequence of random events occurring by pure chance
is in inverse exponential proportion to the length of the sequence. As
we have seen. the sequences necessaryv to produce protocol errors can
be quite long. As the design evolved to correct the errors found by
model checking, the model was easilv adapted. and quickly provided
an analysis of any new errors introduced by design changes. This tends
to amortize the initial effort required to produce the protocol model.
The ability of the symbolic model checker to find errors quickly makes
it easier to experiment with alternative designs. and also helps to build
the designer’s intuition about the behavior of the system. This is im-
portant. because designers tend to concentrate on normal sequences of
events. and overlook the unusual sequences. The use of OBDDs in the
symbolic model checker made it possible to check a model that would
have been very time consuming. or perhaps impossible to check usine
earlier algorithms.

At this point. the technique has a number of limitations. One lim-
itation is the use of OBDDs. For example. while we find the OBDD
sizes growing polvnomially in the number of caches in the Gigamax
model. if we instead increase the number of cache blocks and leave the
number of caches constant. we find the size of the OBDDs increasing
exponentially. As a result. it was extremely difficult to check speciii-
cations of a system with just two cache blocks 1some runs took np to
a week. and others never finished). In these cases. the size of the OB-
DDs representing the fixed point approximations hecame intractabiv
large. When this happens. techniques such as early quantitication that
make the representation of the transition relation smaller are little nse.

4.3. EVALUATION 133

since they do not effect the size of the OBDDs representing fixed point
approximations.

Another major issue is implementation of the protocol. Clearly,
verification of the protocol itself is important, since a correct protocol
1s a prerequisite for a correct implementation. This is, of course. only
half the story. Techniques are also needed to insure that the verified
protocol is implemented correctly in hardware. This can in fact be done.
using a process of successive refinement of finite state systems that has
been studied extensively by Kurshan (Kur87]. The work of Bose and
Fisher [BF89a] is also an example of this. Unfortunately, the truth
of CTL formulas containing existential quantifiers is not necessarily
preserved by this kind of refinement. Thus. for example, though the
high level protocol may be deadlock free. a specific implementation of
the protocol may not be deadlock free’. [n order for the implementation
to preserve all CTL propertics of the protocol. the two would have to
be bisimular (cf. section 2.6.1). Since this is a very strong requirement.
it 1s not clear that the protocol could in fact be implemented with
this degree of accuracy in an etficient way. For essentially this reason.
Grumberg and Long have studied the use of a subset of CTL using
only universal path quantifiers {or hierarchical reasoning [GLI1]. [n
any event. though checking the absence of deadlock specification was
very useful in finding bugs in the protocol, we must attach a special
caveat to this result. since it does not guarantee that all reasonable
implementations of-protocol will be deadlock free.

Finally. there is the problem of verifving a model with a finite num-
ber of processors. when there is no finite limit on the number of pro-
cessors that could in principle be added to the svstem. In practice. the
intended maximum number ol processors is approximately 100. Even
nsing the symbolic model checking technique, however. checking a sys-
tem of 100 processors seems infeasible at present. and 1000 processors
is out of the question. To deal with systems with a very large num-

3In fact. such a deadlock. involving an interaction between the memory and
processor subsystems was known to the Encore engineers. The memory svstem.
when busy. would stall any new requests. but the stalled request would still remain
in the memory system’s pipeline tor tour clock cycles. Thus. when the processor
retried the request four clock cyeles later. it would be stailed again. and the process
would repeat indefinitely.

154 CHAPTER 4. A DISTRIBUTED CACHE PROTOCOL

ber of identical components, we can apply methods of induction over
processes. As in the case of successive refinement. induction methods
are not fully automatic - some human input is required in the form
of an inductive hypothesis. In the next chapter, we will deal with the
problem of induction over processes.

Chapter 5

Induction and model
checking

This chapter deals with the verification of systems that have an ar-
bitrary number of similar components. arranged in some inductively
defined structure. Systems of this type are commonplace - they oc-
cur in bus protocols and network protocols. [/O channels. and many
other structures that are designed to be extensible by adding similar
components. After using a model checking svstem to determine the
correctness of a system configured with a fixed number of processors or
other compounents. it is natural to ask whether this number is enough in
some sense to represent a svstem with anv number of components. For
example. a Gigamax system can be built by connecting some arbitrary
number of cluster buses to a global bus. then filling each cluster bus
with an arbitrary number of processor cards. [t is practically impossible
to verify using model checking methods alone that all possible config-
urations of the system satisfv the specifications. even given a physical
bound on the number of cards in a backplane. However. by supplying
an appropriate inductive hypothesis. we can in many cases reduce the
problem of verifying a system of arbitrary size to one of verifving a
system of fixed size. The inductive hvpothesis can take the form of a
finite state process.

156 CHAPTER 5. INDUCTION AND MODEL CHECKING

5.1 The general framework

Induction over systems of processes can be put in a fairly general frame-
work. which is independent of the mechanics of the process model. rely-
ing only on certain algebraic properties of the operators for combining
processes. Let us assume that we have a collection of processes. and a
collection of operators acting on processes. In a typical process model.
we have some form of parallel composition operator. some form of oper-
ator for renaming signals, and perhaps a hiding operator. which makes
a given signal invisible to the outside. The exact choice of operators
is not material here. however. We require only that the operators be
monotonic with respect to a reflexive transitive relation < on processes.
The idea of this order is that if p < ¢. the p is in some sense more spe-
cific. or more deterministic. than ¢. The properties we wish to verify
should be preserved as we descend the order.

As an example of induction on processes. suppose we have a parallel
composition operator || on processes. which is monotonic with respect
to a pre-order <. In this case. we can apply the following induction
rule:

]
gllp<yq
pli--llp<q

Think of the inequalities p < q and ¢ || p £ ¢ as substitution rules.
If p < q. we can safely substitute p for anv occurrence of ¢ in a given
term. in the sense that we will only make the term lesser in the partial
order. Thus. we can always substitute p for ¢ on the lesser side of an
inequality. For example. if ¢ || p < ¢. we have

qilp =
(qilpilp < 4
gltpdlimitp <

If p < ¢q. we can substitute p for . giving us p | -+ | p = ¢ We
call ¢ a process neariant. Other induction rules can be senerated.
based on other substitutions. For example. assume we have a parallel

5.1. THE GENERAL FRAMEWORK 15

-!

q 3 g=—r 3 Q= (== 3 -

P p P

Figure 5.1: Processes generated by safe substition

composition operator || and a renaming operator ¢. both monotonic
with respect to <. Then we have "

olg) I rllp<gq
ofo(-)llrlip)llrllp<q

Given a collection of substitution rules. we can inductively generate a
class of processes from any process ¢. For example. figure 5.1 depicts
the first few processes in the class generated by the above induction
rule. Every process in the class is smaller than ¢ in the partial order.
Thus. any properties of ¢ which are preserved as we descend the partial
order are inherited by all the processes in the class. The key. then. is
to choose a partial order that preserves the properties we are interested
in verifving. The most straightforward way to do this is to choose a
class of properties that we wish to preserve. and then define the partial
order accordingly.

For example. suppose we wish to preserve all properties expressible
in the logic CTL. In this case. the partial order we obtain is a degenerate
one, which partitions the Kripke models into a set of incomparable
equivalence classes. To see this. assume towards a contradiction that
p satisfies everv ('TL formula satisfied by ¢. and there is some formula
f satisfied by p but not by 4. In this case. it follows that ¢ satisties
—f. This implies. however. that p satisfies = f. a contradiction. Hence.
it p < ¢, then p and ¢ satistfy the same set of CTL formulas. Since
C'TL characterizes Kripke models up to bisimulation [BCGS7]. it follows
that p and ¢ are bisimular. This is unfortunate. since we do not want
our induction framework to apply only to classes of Kripke structures
that are equivalent. [n general. we would like to treat svstems whose
hehavior becomes more specific as we add processes to the svstem.

One way to do this is to use a subset of the logic. For example.
sippose we choose to preserve those formulas which use only universal

158 CHAPTER 5. INDUCTION AND MODEL CHECKING

path quantifiers. This subset is called V-CTL [GL91]. A formulain CTL
is also in V-CTL if driving the negations in to the literals results in a
formula without the £ path quantifier. Examples of V-CTL formulas
are

AG-EGp = AGAF-p

~EGEXp = AFAX-p

Examples of CTL formulas which are not in V-CTL are

AG-AFp = AGEG-p
~EGAXp = AFEX-p

Clearly. if a formula f contains path quantifiers. then f and —f cannot
both be in ¥V-CTL. Grumberg and Long {GLI1]| have shown that if p
satisfies every V-CTL formula satisfied by ¢. then ¢ simulates p. and
conversely. Simulation is easily shown to be reflexive and transitive.
Thus simulation is a pre-order suitable for inductive proofs of ¥V-CTL
formulas. Let p < ¢ iff ¢ simulates p. This gives us the following
induction rule:

gEf (Jev-CTL)

Py
qlir<sq
pll---lipEr
as well as other rules engendered by various svstems of safe substitu-
tions. Recall from section 2.6.1 that simulation is the greatest relation
hetween the states of ¢ and the states ol p such that if r simulates 4.
then:

l. r and y agree on the atomic propositions. and

2. every successor of y is simulated by a successor of .

A Kripke model ¢ simulates p if everyv initial state of p is simulated by
some initial state of ¢. Since this relation can be expressed as a greatest
fixed point in the Mu-Calculus. it can be verified automatically using
the symbolic model checking technique. The fact that simulation is
not symmetric allows us more tlexibilitv in constructing svstems nsine
substitution rules than we would have using bisimulation.

3.2. INDUCTION AND SMV 159

5.1.1 Induction in other models

We can set up an induction tramework for a variety of models by es-
tablishing a pre-order and a set of monotonic process operators. For
models of concurrent automata (such as the s/r model (Kur85]), the
natural partial order is language containment.

[n the s/r model. a process is an automaton which accepts infinite
strings over a Boolean algebra. There are two natural operators over
this class of processes. The automaton product operation simulates
parallel execution. while Boolean algebra homomorphisms can be used
to induce a renaming or abstraction of the variables by which processes
communicate. Kurshan shows that both of these operations respect
the relation of language containment between automata [Kur36]. An
example of induction in this framework can be found in [IKM89].

Induction can also be applied in process algebras like CCS [Mil30]
which are based on two-way synchronization. [n this case. there is a va-
riety of plausible process relations. including observational equivalence.
weak observational equivalence. and a number of pre-order relations on
processes. An induction example using the “may” pre-order for C'C'S
processes can also be found in [KM8Y)].

5.2 Induction and SMV

An induction framework can be set up tor the SMV.0 language. based
on either simulation or bisimulation. This framework includes two kinds
ot process operators - the parailel composition operator || and renam-
ings operators based on maps o from locations to locations. e will
show that both are monotonic with res»ect to simulation and bhisimu-
lation.

5.2.1 Proving compositionality

Recall that semantically. an SMV.0 program denotes a triple (T. 1. R).
where T assigns tvpes to locations. [is the set of initial states. and
R is the transition relation. There are two basic process operators
provided by SMV: instantiation and parallel composition. An instanti-
ation results from a map o on locations (a renaming). This renaming

160 CHAPTER 5. INDUCTION AND MODEL CHECKING

induces a map ® from states of ¢(M) to states of M, such that for
all locations I, ®(z)(!) = z(#(!)). If M = (T.1.R) is a process, then
é(M) = (T',I', R') where

L T'(¢(D)) = T(D),
.I'={z | ®(z)€ I} and
3. R ={(z,y) | (®(x).®(y)) € R}.

The rules for renaming require that no hidden location can be renamed
to a visible location. and no two distinct locations can be renamed
to the same hidden location. The following lemma and theorem show
that this definition of renaming is a suitable operation for inductive
reasoning using simulation or bisimulation:

o

Lemma 4 Let o be a legal renaming. and let ® be the state map induced
by ¢. If 2} = ®(x1) and 2| agrees with r’y on the visible locations. then
there exists xq which agrees with x; on the msible locations. such that
&y = ®(z,).

Proof. Construct £y as follows: For every location (. if [is in the
range of ¢. then choose any [’ such that / = o(!'). and let r,(1) = o4({').
Otherwise, let z,(1) = £,({).

First we show that v}, = ®(r,). For all locations {”. if 6(1") is visible.
then [must also be visible (since hidden locations cannot legally be
renamed to invisible locations). Let / = o(/"). Since [is in the range
of o. there is some visible ' such that / = o(/) and ry(l) = (1.
Since | and z, agree on the visible locations. o4(I") = x(!'). Since
o= ®(ey), /) = o (D) = 24" = 240", Thus 24(1" = xa(o(I").
On the other hand. if &({") is hidden. there exists no other location //
such that of!") = o(!"). since two locations cannot legally be renamed
to the same hidden location. Therefore ry(o(l”)) = 24,(1"). Thus. by
definition r;, = ®(.ry).

Second. we show that &y and ., agree on the visible locations. Let /
he any visible location. If /is not in the range of o. then r (/) = &) by
construction. Otherwise. there is an " such that o/} = [and r,(/)
(). Since " must be visible. o,(I'v = #1{/") = v{o(I) = x (D).

(e

3.2. INDUCTION AND SMV 161

Theorem 9 [nstantiation of SM V.0 modules is monotonic with respect
to simulation and bisimulation.

Proof. Imagine that we have two processes, M, and M,, such that
My simulates M. _

First, let z; and z, be states of ¢(\M,) and &(M,) respectively. We
show by induction that if &, and z, agree on the value of all visible
locations, and if ®(z2) sitnulates ®(.xy). then x; n-simulates ., for all
.

The basis case is trivial. since r, 0-simulates r, exactly when z,
and ry agree on the value of all visible locations.

For the induction step. let (xr.y) be any transition of o(M,). By
definition, (®(x,), ®(y;)) is a transition of M. Hence. there exists a
transition (®(z,), y3) of M, such that ®(y,) simulates y}. Since ®(y;)
simulates y;, ®(y,) and i} agree on the visible locations. By the lemma.
there must exist y» which agrees with y, on the visible locations, such
that y, = ®(y2). By inductive hypothesis. y» (n — l)-simulates y;,
therefore r; n-simulates x,.

Now we show that every initial state of &(M,) is simulated by some
initial state of o(:Mz). A state &, is initial in o(M;) exactly when
®(z,) is initial in M. Let £ = ®(xy). If &} is initial in M. then it
is simulated by some 1) which is initial in .W,. Since r is simulated
by r7, they agree on the values of the visible locations. Hence. by the
lemma. there exists z, which agrees with &, on the visible locations.
such that &}, = ®(x;). By the above argument. r, is simulated by .r,.
Therefore. o(M) is simulated by o(.M,).

We can prove that renaming respects bisimulation by the same ar-
gument. applied symmetrically,. O

The parallel composition of SMV.0 programs is formed by taking
the union of the type tunctions T and the intersections of the initial sets
[and the transition relations R. after renaming the hidden variables
of each process onto disjoint spaces. We can show that this operation
is also suitable for inductive reasoning:

Theorem 10 Parallel composition of SMV.0 programs is monotonic
with respect to simulation and bisimulation.

162 CHAPTER 5. INDUCTION AND MODEL CHECKING

Proof. Imagine that we have four processes, M;, M, M| and M.
such that M, is simulated by Af; and M| is simulated by M.

Let ¢ and ¢’ be the renamings associated with parallel composition.
These are identities over the visible locations, and map the hidden
locations onto disjoint ranges. Let ® and &' be the induced state maps.
(Thus, given a state of a parallel composition M || M’, ® yields the
corresponding state of M and @’ vields the corresponding state of M'.)
Let z, be a state of M; || M| and let r, be a state of M || M) We
show by induction that if ®(a;) is simulated by ®(x;) and ®'(1)) is
simulated by ®'(x,). then z; n-simulates ;. for all n.

For the base case, since o is the identity for the visible locations.
®(r,) agrees with x, on the visible locations. as does ®(x;) with x,.
Since ®(z,) is simulated by ®(x,). they also agree. therefore r; 0-
simulates ;.

For the induction step, let «; = ®(x,), u} = ®'(z,). wy = ®(22).
uy = ®’'(z2). Let (x4, y1) be a transition of M, || M]. and let v, = ®(y,)
and ¢} = ®'(y1). By definition. (u,.v,) is a transition of .W; and (u}.v})
is a transition of .M. Since u, is simulated by u, and u] is simulated by
ugy, there must exist vy and v; such that (u;.v;) is a transition of .
(u5, v3) is a transition of M. ¢y is simulated by vy and ¢ is simulated
by v5. Now we construct y,. For all visible locations [. let y,({) = y,({).
For all hidden locations { in the range of o. there is a unique " such that
[= ¢(!"), since a renaming cannot legally map distinct locations on to
the same hidden location. Let y,(/) = vy(!’). Similarly. for all hidden
locations ! in the range of o'. there is a unique ! such that / = o'(l").
Let y2({) = vy(!"). By this construction. ¢, = ®(yz) and ¢, = ®'(y,).
Hence. by inductive hypothesis. 3 (1 — 1)-simulates y;. By definition.
(£, y2) is a transition of M, || M). Therefore y n-simulates ..

Now we show that every initial state of M, || M| is simulated by
an initial state of My || M;. Let r, be an initial state of M/, || M| and
let uy = ®(zy). u; = ®'(2y). By definition. uy is initial in M, and «|
is initial in Mj. Hence there exist u, and u/, such that «; is simulated
by uy. v} is simulated by). v, is initial in M, and «} is initial in
M. We can construct 3 such that u, = ®(r,) and v} = &'(ry) in the
same manner as we constructed y, above. By the above argument.
is simulated by @.

5.2. INDUCTION AND SMV 163

We can prove that parallel composition respects bisimulation by the
same argument, applied symmetrically. O

5.2.2 Computing simulation relations

Since the simulation and bisimulation relations can be expressed in
the Mu-Calculus (cf. section 2.6.1). they can be computed using the
svmbolic model checking technique. In this way, we can automatically
test whether substituting a given module p for another module ¢ is safe.
in the sense of preserving all CTL or V-CTL properties.

There are a few techniques that can improve the efficiency of this
process. The simplest is to note that simulation between two states
implies that they agree on the values of the visible locations. There-
fore. there is no need to use separate OBDD variables to encode the
visible locations of the two processes when representing the simulation
relation. As with CTL model checking, we can compute the reach-
able state space of the two programs. and use these sets to restrict the
computation of the equivalence relation. In cases where the simula-
tion relation cannot be computed. we can instead compute a stronger
relation between the programs. which requires that all pairs of states
which are simultaneously reachable (reachable along paths which agree
on the visible locations) are I-simular. This relation can be tested by
a forward search of the reachable state space of the composition ot the
two programs. In the case of deterministic programs (in which no two
successors of a given state agree on all of the visible locaticns). this
amounts to a test of string language containment {GLIL]. In either
approach, if the test fails. we can extract as a counterexample a pair
of paths, such that all corresponding states are 0-simular. and the last
pair fails to be [-simular. This test can be used to formulate another
guess for the process invariant. until a sound invariant is found.

SMYV supports induction in the following way. Each hypothesis of
an induction rule is of the form p < q, where p and q are modules.
This is completely general. since module p can be an arbitrary parallel
composition of instances of other modules. By inserting the declaration

SIMULATES p

164 CHAPTER 5. INDUCTION AND MODEL CHECKING

in module q, we cause the SMV model checker to test whether q simu-
lates p and if not, to produce a counterexample.

5.2.3 Induction and SMV.1

Is it possible to extend the above framework to SMV.1. which includes
interleaving processes? Unfortunately. the answer is no: Consider. for
example. the following two modules. which are bisimular:

MODULE a
VAR
X : boolean;
ASSIGN
init(x) := 0;
next(x) := 0;
MODULE b
X : boolean;
ASSIGN
init(x) := 0;
next(x) := x;

Note. however, that if we substitute a for b in the following program.
the resulting program is not bisimular to the original:

MODULE main
VAR

p : process b;
ASSIGN

next(p.x) := 1;

This is because process main mayv intervene between steps of process
p. changing the value of p.x to L. In this state. which is not reachable in
a or b alone, the two modules have different behaviors. Hence parallel
composition in SMV.1 does not respect bisimulation (neither does it
respect simulationi. This problem is a gencral feature of languages that
support interleaving processes with shared variables. Tt is difficult. tor
example. to tormulate a compositional rule for the leads-to operain
of UNITY logic [CMS3]. For this reason. we will use onlyv the SM\V.0
subset for induction over processes.

5.3. EXAMPLE: THE GIGAMAX PROTOCOL 165

»
.
.
[
.
.
.
.
.
]
.
*
.
.
[l
.
.
.
]
.

f

A s
tvaccsnsanssncocadrrans

Figure 3.2: Substitution generating processors on bus

5.3 Example: The Gigamax protocol

[n this section. we tormulate a safe substitution rule that generates an
arbitrary number of Gigamax processors attached to a cluster bus. As
our invariant. we will use a single processor module attached to the
end of a cluster bus. The strategy will be to generalize this module by
adding nondeterminstic choice until it is able to simulate itself with one
additional processor attached. as viewed from the bus. The counterex-
amples produced by the model checker will provide clues as to how the
proposed invariant should be generalized. After a correct invariant is
obtained. we can use this invariant to prove properties of the protocol
that hold independent of the number of processors on a cluster bus.

The general form of the substitution rule we use is depicted in fig-
ure 3.2. The SMV code representing the lett hand side is shown in
figure figure 5.3. and the code for the right hand side (the invariant)
1s shown in figure 5.1, In our first guess for the invariant. we will use
the original processor model from the previous chapter. Qur approach
will be to add behaviors ce.. non-determinism) to the processor model
until we have a correct invariant.

Essentially. we are testing whether one processor can mimic the ac-
tions of two processors as seen trom the bus. Checking this produces a
counterexample in which one of the two processors reaches the owned
state. then the second processor issues a read command. This behavior
cannot be produced by a single processor. To fix this problem. we can
modify the processor model so that a processor is allowed to issue a
read command in the owned state. [t then sets its own “snoop” flag.
and enters the shared state on a read-shared. and the owned state on
a read-owned. Testing this new invariant produces another counterex-

166 CHAPTER 5. INDUCTION AND MODEL CHECKING

MODULE rule(CMD,REPLY-OWNED,REPLY-WAITING,REPLY~STALL,
cmd,reply-owned,reply-waiting,reply-stall,master)
VAR
b : bus-connector(self,p); '
p : processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);
q : invariant(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL,
b.cmd,b.reply-owned,b.reply-waiting,b.reply-stall,b.master);

MODULE bus-connector(a,b)
ASSIGN b.master := !'a.master union O;
DEFINE
cmd :=
case
a.master : a.cmd;
b.master : b.cmd;

1 : idle;
esac;
reply-owned := a.reply-owned | b.reply-owned;
reply-waiting := a.reply-waiting | b.reply-waitingl;
reply-stall := a.reply-stall | b.reply-stalll;
master := a.master | b.master;

Figure 5.3: Substituion rule for adding one processor

5.3. EXAMPLE: THE GIGAMAX PROTOCOL 167

OPAQUE MODULE invariant(CMD,REPLY-QWNED,REPLY-WAITING,
REPLY-STALL,cmd,reply-owned,reply-waiting,reply-stall,master)
SIMULATES rule

VAR
b : bus-connector(self,p);
p : processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);
t : bus-terminator(CMD,REPLY-QWNED,REPLY-WAITING,REPLY-STALL,

b.cmd,b.reply-owned,b.reply-waiting,b.reply-stall,b.master);

MODULE bus-terminator (CMD,REPLY-OWNED,REPLY-WAITING,
REPLY-STALL,cmd,reply-owned,reply-waiting,reply-stall,master);
ASSIGN
CMD := cmd;
REPLY-OWNED := reply-owned;
REPLY-WAITING := reply-waiting;
REPLY-STALL := reply-stall;

Figure 5.4: The invariant

ample in which the first processor reaches the owned state. then issues
a read command (thus setting its snoop and waiting bits). then the
second processor issues a read command. One processor alone cannot
produce this behavior. since it cannot issue a second read command
while its waiting flag is set. We modify the processor model to allow
this behavior. Note that this is behavior is safe, since the second read
command is blocked by the waiting tlag which is already set. With this
modification. we have a correct invariant.

[’sing this invariant. we can check properties of the system in V-
("TL. using the invariant in place of the processors on the cluster buses.
The substitution rule can be applied as many times as necessary to
produce a svstem with an arbitrary number of processors while pre-
serving all of the verified properties. We can also refer these properties
back to our original model by showing that the generalized processor
model simulates the original one. [n order to verify properties such as
deadlock freedom. however. which use existential path quantifiers. it
would be necessaryv to prove bisimulation rather than simulation. This

168 CHAPTER 5. INDUCTION AND MODEL CHECKING

means that it would not be possible to use the strategy of generalizing
the original model until an invariant is reached. since the generalized
model would not be bisumulation equivalent to the original model.

5.4 Related research

A number of methods have been proposed in the past for extending
automatic verification to parameterized designs that have an arbitrary
number of similar or identical processes.

The first to approach this question were Browne. Clarke and Gruni-
berg [BCGS86], who extended the logic C'TL to a logic called indexed
CTL. This logic allows the restricted use of process quantifiers as in
the formula V; f(7). which means that the formula f holds for some
process .. Restricting the use of these quantifiers and eliminating the
next-time operator makes it impossible to write a formula which can
distinguish the number of processes in a svstem. By establishing an
appropriate equivalence between a svstem with n processes and a svs-
tem with n + 1 processes. one can guarantee that all svstems satistv
the same set of formulas in the indexed logic. This method was used to
establish the correctness of a mutual exclusion algorithm by exhibiting
a bisimulation relation between au n-process system and a 2-processes
system. and applying model checking to the 2-process system.

A disadvantage of the indexed ('TL method is that the bisimulation
relation must be proved in an ad hoc manner. Finite state methods
cannot he used to check it hecause it is a relation hetween a finite-
state process and a process with an arbitrarv number of states. Clarke
and Grumberg dealt with the problem of establishing a bisimulation by
introducing the notion of a process closure 1’~. This process must be
derived bv hand. and have the property that M, || P* is equivalent to
M, 4y || P~ for some small r. This can be verified mechanically. Shtadler
and Grumberg took this notion a step further by introducing nefwork
grammars 1o describe classes of finite state svstems. This technigue
used an indexed form of linear temporal logic. and required that the
processes on the left and right hand sides of each grammar rule be
equivalent in an appropriate sensc.

The requirement that all systems gencrated by the grammar be

5.4. RELATED RESEARCH 169

equivalent seems to be a rather strict limitation, however. The method
of this chapter, which uses a partial order rather than an equivalence,
was first proposed by Kurshan and McMillan [KM89], and simulta-
neously by Wolper and Lovinfosse [WL89]. Around the same time,
Burch was also applying a similar idea to Dill’s trace theory for speed-
independent circuits.!

Another method for proving properties of systems of identical pro-
cesses is due to German and Sistla {GS]. It uses a linear-time temporal
logic for specifications (again. the next-time operator is not allowed)
and is fully automatic. By means of a distinguished “control” process.
it is possible to check some global properties (although process quanti-
fiers are not present in the logic). U'nfortunately, because the decision
algorithm is doubly exponential in the process size. this method has
not been applied in practice.

A system called GORMEL has been created by Marelly and Grum-
berg, implementing the techniques ot {SG89]. GORMEL uses context
free grammars to describe svstems of processes. This is fairly similar to
the use of module substutution rules in SMV. There are a number of dif-
terences between the svstems. however. GORMEL is oriented towards
verification of distributed algorithms. It uses a model of transition svs-
tems with pairwise svnchronized actions. as in CCS. This model is not
well suited for describing digital systems - first because most signals in
hardware are broadcast to more than one location. and second because
many signals are exchanged back and forth between components of a
system in a single clock cvele. The difficulty of reducing this two way
exchange of many signals to a single atomic action would make it ex-
tremely cumbersome to create a ('(’S-like model for a svstem like the
(iigamax.

Another difference is in the logic - GORMEL uses an indexed ver-
sion of LTL without next-time called LTL?. As in indexed C'TL. it is
not possible to nest process quantifiers. Because of the ability to use
process quantifiers. it is possible to express some properties which are
not expressible in C'TL. for example that if a proposition p is true in
some process. then it is eventually true in all processes.

For the process relation. GORMEL uses a form of stuttering equiv-

‘ ,
‘ Personal communication

170 CHAPTER 5. INDUCTION AND MODEL CHECKING

alence rather than simulation. This places fairly strong requirements
on the allowable grammar rules. In particular, it is not possible in such
a system to take the approach taken here of successively generalizing a
component process in order to obtain an invariant, since the required
relation between the left and right hand sides of the grammar rule is a
symmetric one. The GORMEL approach will work if the various sys-
tems generated by the grammar can be distinguished only by stuttering
(arbitrary repetition of the same state labeling).

A final difference between the systems is. of course, that SMV is
hbased on symbolic model checking methods. This is not clearlv an
advantage. however, since the state explosion problem may not be very
severe for the small number of processes that tend to be involved in
induction rules.

Chapter 6

A partial order approach

[n this chapter. we consider an alternative to the symbolic model check-
:ng method which is also aimed at avoiding the state explosion prob-
lem. A number of researchers have observed that the arbitrary in-
terleaving of concurrent actions is a major contributor to the state
explosion problem. and that substantial efficiencies could be obtained
if the enumeration of all possible interleavings could be avoided. As
a result. several have proposed verification algorithms based on par-
tial orders [Val89. Val90. God90. GW9L. PL89. PL90. YTKI1]. The
method presented here is based on unfolding a Petri net into an acyclic
structure called an occurrence nef. The notion of unfolding was intro-
duced by Nielsen. Plotkin and Winskel as a means for giving a con-
current semantics to nets, but in this case the goal is to avoid the
state explosion problem. \n algorithm is introduced for constructing
the unfolding of a net. which terminates when the unfolded net rep-
resents all of the reachable states of the original net. The unfolding
is therefore adequate for testing reachability (to be more precise. rov-
erabality) and deadlock properties. [t is shown using an asvnchronons
circuit example that the untolding can be polvnomial in the circuit
size while the state space is exponential. [n contrast. the stubborn
sets method of Valmari [Valg89. Val90] and trace automaton method of
Godefroid [God90. (W9l are ineffective in reducing the state explo-
sion problem for asvnchronous circuit models. because of the ubiquity
of confusion in such models. In addition. because the untolding method
is fullv automatic. it has a certain advantage over hehavior machines

171

172 CHAPTER 6. A PARTIAL ORDER APPROACH

method of Probst [PL89. PL90], which requires a pomset grammar de-
scribing the circuit’s behavior to be constructed by hand.

6.1 The unfolding operation

Briefly. an occurrence net is a Petri net without backward conflict (two
transitions outputting to the same place). and without cvcles. Such
a net can bhe obtained from an ordinary place/transition net by an
unfolding process. Figure 6.1 shows an example of a net and part of
its unfolding. Since the occurrence net it is acvclic and rooted. there is
a natural well founded (partial) order on the transitions and places of
the net. This order is called the dependency order. It is impossible for
a transition of the occurrence net to fire unless all of its predecessors
in the dependency order have fired.

The most important theoretical notion regarding occurrence nets is
that of a configuration. A configuration represents a possible partial
run of the net - it is any set of transitions that satisfies the following
conditions:

1. If any transition is in the configuration. then so are all of its pre-
decessors in the dependency order (a configuration is downward
closed).

2. A configuration cannot contain two transitions in conflict. mean-
ing that both input from the same place.

An example of a configuration is shown in ligure 6.2, with elements
of the configuration -filled in black. Two transitions in the figure are
hatched in. Either of these transitions can be added to the black set to
form a new configuration. Adding any other transition would be illegal.
however. since it would either violate downward closure or conflict-
freeness.

In an unfolding. each transition corresponds to a transition of the
original net. and each place correspouds to a place of the orieinal net.
We can associate each configuration of the unfolding with a state t mark-
ing) of the original net by simplyv identifving those places whose tokens
are produced but not consumed by the transitions in the contiguration.

6.1. THE UNFOLDING OPERATION 173

a) Petri net b) Unfolded to occurrence net

Figure 6.1: ['nfolding example.

174

CHAPTER 6. A PARTIAL ORDER APPROACH

Figure 6.2: Contiguration

6.1. THE UNFOLDING OPERATION 175

This set is marked with black dots in figure 6.2. Mapping this set back
onto the original net, we obtain the final state of the configuration.

The final theoretical notion we need regarding unfoldings is that
of a local configuration. The local configuration associated with any
transition consists of that transition and all of its predecessors in the
dependency order (that is. the downward closure of the transition as
a singleton). This is the set of transitions which necessarily are con-
tained in any configuration containing the given transition. Note that
a local configuration may not exist if this set contains two transitions
in conflict.

We are now ready to consider the problem of building a fragment
of the unfolding which is large enough to represent all of the reachable
markings of the original net. Building the unfolding itself is straight-
forward. The process starts with a set of places corresponding to the
initial marking of the original net. The unfolding is grown by finding a
set of places in the unfolding which correspond to the inputs (preset)
of a transition in the original net. then adding a new instance of that
transition to the unfolding, as well as a new set of places correspond-
ing to its outputs (postset). If the new traasition has no conflicts in
its local configuration (more precisely. if it has a local configuration)
it is kept. otherwise it is discarded. This is because the existence of a
conflict means that the new transition can occur in no configurations
of the unfolding.

The key to termination of the unfolding is to identify a set of tran-
sitions of the unfolding to act as cutoff points. This set must have the
following property: any configuration containing a cutoff point must
be equivalent {in terms of final state) to some configuration containing
no cutoff points. From this definition. it follows that any successor of
a cutoff point can be safely omitted from the unfolding, without sacri-
ficing any reachable markings of the original net. To see this. suppose
we have built the unfolding onlv up to the cutoff points. in the sense
that any new transition we can add must have a cutoff point as a pre-
decessor. From this point on. any transition we add must be descended
trom some cutoff point. Thus. anv configuration we might add to the
nnfolding must have the same final state as some configuration already
present.

A sufficient condition for a transition to be a cutoff point is the

176 CHAPTER 6. A PARTIAL ORDER APPROACH

following: the final state of its local configuration is the same as that of
some other transition whose local configuration is smaller. The proof
of this statement is as follows: suppose there are two transitions ¢, and
t2, whose local configurations have the same final state. with that of
t» being smaller. Now imagine a configuration C, (local or otherwise)
containing t;. We can obtain C, from the local configuration of ¢, by
adding the transitions in the difference one at a time. in an order con-
sistent with the dependency relation. According to our construction. at
each step of this process, there is a corresponding transition we can add
to the local configuration of ¢, leading to the same final state. Hence.
we can build a configuration C; containing ¢, which has the same final
state. but is at least one transition smaller than (', since we started
from a smaller set. Thus if any configuration contains a cutoff point.
it is equivalent to a smaller configuration. Configurations cannot be
made arbitrarily small, however. so any configuration containing a cut-
off point must be equivalent to a configuration not containing a cutoff
point. Since all the reachable states are represented by configurations
containing no cutoff points. it is unnecessary to build the unfolding
bevond any cutoff point.

We can find the cutoff points by simply keeping a hash table of all
transitions, indexed by the final state of the local configuration. If when
generating a transition. we find in the table a transition with equivalent
but smaller local configuration. we discard the new transition. We can
show. as follows, that this process is guaranteed to terminate if the
original net is bounded and finite. First. the depth of the unfolding
must be bounded by the number of number of reachable markings.
The depth of a given transition in the unlolding is the longest chain of
predecessors of that transition. Each transition in this chain has a local
configuration. and these local configurations form a chain of increasing
size. If the depth of the given transition is greater than the number
of reachable markings of the original net. then by the pidgeon-hole
principle. two of these local configurations must have the same final
state. This cannot be. however. since in this case one of the transitions
in the chain would have been determined to be a cutoff point. If the
original net is bounded. it has a finite number of reachable markings.
hence the depth of the untolding is bounded. If the original net is finite.
we can show by induction that the number of transitions at any given

6.1. THE UNFOLDING OPERATION 177

left resource
«critical section

Ry right resource

F(i+1) mod n

Figure 6.3: Dining philosophers net.

cepth in the unfolding is finite. Hence the total number of transitions
generated by the unfolding process is finite.

As an example of termination. consider the net of figure 6.3. which
represents the dining philosophers paradigm. In this scenario. there
are n concurrent processes {philosophers). each ot which must acquire
the use of two shared resources (forks) in order to execute its critical
section (eating spaghetti). The processes are organized in a ring. with
each neighboring pair sharing one resource. Figure 6.1 shows the com-
pleted unfolding for the case ol three philosophers (n = 3). The cutoff
points are marked with an X. The local configuration of each of these
transitions is equivalent to the empty configuration. Ve observe that
the size of the unfolding is not only bounded. but is linear in the num-

ber of philosophers. while the number of states is exponential as shown
in table 6.1.

Recall that in growing the untolding, it is necessary to enurnerate all
of the subsets of places which correspond to the inputs of transitions.
The complexity of this is O“)' where n is the size ot the unfolding. and
¢ 1s the largest number of inputs of anv transition. This is.ol course.
bounded by n‘. which is polvnomial given a tixed value of . In practice.

178 CHAPTER 6. A PARTIAL ORDER APPROACH

@
t1
Ol ® o f1
K = G-0-RKO «
t O B O O
O ary fo
2 OO I
O~TK%Z ~ T A-O~REO |,
f2 (O—= O ez O
3 O
_ A3 O fa
OK% — T O-RKKO .,
t3 O H_0 €3 e
I ars fq
O
1

Figure 6.4: Unfolding of the dining philosophers net.

number size of unfolding ‘ number of
of philosophers (transitions) | reachable states {
2 | 9 22 i
3 | 13 100 |
1 i 17 166 j
5 | 21 | 2164

Table 6.1: 'nfolding size and number of states for Dining Philosophers

6.1. THE UNFOLDING OPERATION 179

however, the number of subsets which are considered can be reduced
quite effectively, using the following two techniques. First, suppose we
are ennmerating the subsets: we need not add any place to the set if
the resuit would not be coutained in the set of inputs of any transi-
tion. Second whenever a place is added to the set. we can immediately
eliminate trom consideration all of the places which have a predecessor
in conflict with a predecessor of the new element. since any transition
with both places as inputs would be discarded. We add transitions to
rhe net in order increasing size of the local configuration. so that we
can use a hash table to determine whether or not each transition is a
cutoff point. Thus. whenever a candidate for a transition in the un-
tolding is generated. it is placed in a queue ordered by increasing local
configuration size. The places of the net are enumerated by pulling the
first element ¢ from this queue. testing whether it is a cutoff point.
and if not. generating places for its outputs. The procedure terminates
when the queue of candidate transitions becomes empty. Figures 6.5
and 6.6 show a psetido-cade unplementation of this procedure. The
pseudo-code is written somewhat inefficiently in places for simplicity.

[n function Unfold. the arguments P. T and M, are the places.
transitions and initial marking of the original net. Each place in the
untolding is represented by a paiv (place. preds). where place is the cor-
responding place in the original net. and preds is the set of immediate
predecessor transitions in the unfolding (note that since there is no
backward conflict. the size of this set is at most one). Each transition
in the unfolding is represented by a pair (trans. preds). where trans is
the corresponding transition in the original net. and preds is the set of
immediate predecessor places in the anfolding. The function returns £’
and T'. the set of places and transitions. respectively. of the unfolding.
Lhiere is also a quene ()" of transitions to be expanded. and a hash table
t HashTable) used tor identifving cutotf points.

Coverability problems can be solved nsing the nniolding in rhe tol-
lowing wayv. lmagine we have a set of places in the original ner. and
we wish to determuned whether this set can every be simultaneously
marked. We simply add a new transition (o the net. whose inputs
are the given set. and then construet the unfolding. 1 the nntolding
contains anv instance ot this new transition. the set is coverable. and
otherwise not.

180 CHAPTER 6. A PARTIAL ORDER APPROACH

global P'.T",Q’.HashTable[]
function Unfold(P,T,Mp)
P'=T' =@ = 0: clear HashTable
for each p € My do
add p’ = (p,0) to P’
GenTrans({p'}.T)
end for
while the queue Q' is not empty do
pull the first ¢’ off of Q’
if not IsCutoffPoint?(t’) do
for each p in outputs of trans(t’) do
add p’ = (p.{t'}) to P’
GenTrans({p'}.T)
end for
end if
end while
return{ P'.T")
end function

procedure GenTrans(S'.T)
if not exists ¢t € T such that place(5") C inputs of ¢ then return
if Predecessors(.9”) has forward conflict then return
forall t € T do if place(S’) = inputs of ! then
add ¢ = (t.5") toset T’
insert ¢/ in Q' in order of {LocalConfig(t"!
end for
for all p’ € P where p/ older than anv member of 5§’ do
GenTrans(S'u p'.T)
end procedure

Figure 6.5: Pseudo-corde implementation of unfolding procedure

6.1. THE UNFOLDING OPERATION

function [sCutoffPoint?(¢})
C} = LocalConfig(¢})
$1 = FinalState(C})
L' = HashTable[HashFun(57))
forall t5 in L' do
(", = LocalConlfig(¢})

if §{ = FinalState(C%) and Size(C)) < Size(C}]) then return(1)

end for
add t} to HashTable[HashFun(57)]
return(0)

end function

function LocalConfig(t’)
return(Predecessors({t'}) N T")
end

function Predecessors(S’)
do
5" = 5'U preds(S”’)
until S’ unchanged
end function

function FinalState(C")

let S’ be the set of all p’ € P’ such that predsip’) C "

return(place(S’ — preds(C”)))
end function

Figure 6.6: Pseudo-code. continued.

181

182 CHAPTER 6. A PARTIAL ORDER APPROACH

a c b
1
D
0 g

Figure 6.7: Translation from circuit to net

6.2 Application example

We now consider a more realistic example than the dining philosophers
- a speed-independent [Sei80b] circuit designed to implement a dis-
tributed mutual exclusion (DME) protocol. The circuit was designed
hv Alain Martin [Mar83] and has been analvzed using an abstracted
trace theoretic model by Dill [Dil33]. It was also used as an example
for the symbolic model checking method in section 2.4.2.

Networks of logic gates in speed-independent circuits are readilyv
modeled by Petri nets. A network of 1 gates can be modeled by a Petni
net of O(n) places. When we model a neiwork of gates as a Petri net.
we introduce two places for each input of each gate. One represents the
the input in a logic low state. while the other represents the input i
a logic high state. Transitions in the Petri net correspond to rising or
falling transitions of gate outputs. .\ rising transition of a gate output
removes all the logic low tokens from the inputs to which it is connected.
and places tokens on the correspondine logic-high places.

As an example. figure 6.7 shows the net fragment representing an
AND gate. When both inputs of the gate are at the logic high state. we
can move a token from the place representing logic low at the output
to the place representing logic hich. Similariyv. if either input is at the
logic low state. we can move a token {rom the place representing logic
high at the output to the place representing logic low.

A dvnamic hazard occurs. for example. it the AND gate’s output i~
enabled to rise while one of the inputs is enabled to fall. The problem
of whether or not a dvnamic hazard can ocenr can thus be posed as a

6.2. APPLICATION EXAMPLE 183

coverability problem. Alternatively, since dynamic hazards correspond
to dynamic conflicts in the unfolding, the problem can be solved by
constructing the unfolding and examining it for dynamic conflicts. ie..
two transitions which are in conflict. and which may be simultaneously
enabled. The DME circuit also uses special two-way mutual exclusion
elements as components, which are immune to certain hazards. In
checking the DME ring for hazards. we ignore conflicts between rising
transitions of a mutual exclusion element’s acknowledge outputs.

Table 6.2 shows the results of the occurrence net unfolding proce-
dure (ONU), and a depth-first traversal of the state space (DFT), for
the Petri net model of the circuit. for rings with one to five cells. The
depth of the occurrence net unfolding for the case of 5 cells was 141
transitions. The number of transitions in the ONU increases quadrati-
cally in the number of cells. This is because as the number of cells in
the ring increases. a request must be relayed through a greater number
of stages in order to obtain the token. in the worst case. At the same
time. the number of cells which are requesting also increases. The oc-
currence net therefore grows in both width and depth in proportion to
the number of cells. As we increase the number of cells in the ring.
the number of reachable global markings increases exponentially. For
this reason. it was only possible to apply DFT to a system of five cells.
before the available memory resources were exhausted. [t is known.
hiowever. from using OBDD based methods. that the number of states
increases asvmptotically by slightly less than a factor ten for each added
cell.

How do these results compare other methods for avoiding the state
explosion problem? The trace theory approach of Dill [Dil88]| required
an abstract model of the arbiter cell to be created by hand. This reduces
rhe state explosion problem. but does not entirely solve it. since even
with the reduced model. the number of states still increases exponen-
rially with the number of components. Probst {PL90] reports a method
which requires quadratic space and time in the number of cells. but
also is not fully automatic. The methods of Valmari [Val89, Val90] and
Godefroid [God90. GW91} and Yoneda [YTKO1] cannot be effectively
applied to this example or to other speed independent circuits. because
in all states. all enabled transitions are in conftlict with some disabled
transition. Thus no transition can be statically guaranteed to be per-

184 CHAPTER 6. A PARTIAL ORDER APPROACH

User
req l T ack
g -
DME ‘req
x
o ack
= ~
_ 3 3
§-—) W QO te—c
S_Jd 3 s 28
[~ 0
g 2
3oe | a
bes na
] Q
Q
yoe l T bau
i8sn

Figure 6.3: Distributed mutual exclusion circuit

sistent. Experiments by Holger Schlingloff' have confirmed this to be
the case. It is possible. perhaps. that some more clever static analvsis
technique could be used to show that some transitions are persistent.
in which case these methods could be applied to some effect.

Finally. in chapter 2. we saw that the svmbolic modei checkine
method had cubic time complexity and lincar space complexity. usine
a simultaneous model. Burch and Long? have obtained O(n**) time
complexity for this circuit using svmbolic model checking with a modi-
fied search order {cf. section 2.3). This method requires some hand op-
timization. however. In anv event. it appears that the svmbolic model
checking method vields somewhat better asvmptotic performance for
the DME circuit. though both methods effectively solve the state ex-
plosion problem. :

! Personal communication
?Personal communication

6.3. DEADLOCK AND OCCURRENCE NETS 185

number | size of unfolding number of
of cells (transitions) reachable states
1 23 22
2 125 502
3 313 6579
4 604 75172
3 1013 802425

Table 6.2: Performance of ONU and DFT on hazard-detection problem
for the distributed mutual exclusion circuit

6.3 Deadlock and occurrence nets

Besides coverability, another interesting problem for Petri nets is the
question of deadlock. A terminal marking of a Petri net is one in
which no transitions are enabled. Reachability of a terminal (or dead-
locked) state cannot be framed in terms of the coverability problem.
However, since the unfolding represents all reachable markings, a net
has a reachable terminal marking if and only if its unfolding has a
reachable terminal marking. The problem of existence of a reachable
terminal marking of an occurrence net is NP-complete. This is eas-
ily shown by reduction from 3-SAT.? To see this consider the formula
(sr+ i+ 2)2+ yz+22) - - (Xn+ yn+ =n) where each z,, y; and =, is
a positive or negative literal. Assume the formula has m variables. Let
the positive literals be /... .. l.n. and the negative literals be L..... L.
In polynomial time. we can construct a net which has a terminal mark-
ing if and only if the formula is satisfiable. The initial marking of the
net is a set of places {vy..... tm}. There is a place representing each
positive literal {y,....[n and each negative literal l,....ln. For each
variable v;, there is a transition from v; to I, and from v; to {,. For
each conjunct (r; + y; + z,). there is a transition ¢;, whose preset is
{Z.,7i. 5. }. In other words. the transition ¢, is enabled to fire if and
only if (&, + y; + =) is false. Thus. some transition ¢, is enabled to fire
if and only if the whole formula 15 false. The postset of each transition

IGatisfiability of a Boolean form ula in conjunctive normal form. with three lit-
erals in each conjunct.

186 CHAPTER 6. A PARTIAL ORDER APPROACH

Figure 6.9: Reduction from 3-SAT problem to a terminal marking prob-
lem.

c, is the single place {¢q}. and there is a transition from {4} to {4}.
Thus. if any ¢; fires. the net may never reach a terminal marking. As a
result. there is a terminal marking of the net it and only if the tormula
is satisfiable. For example. figure 6.9 shows the net constructed for the
formula (¢ + b+ &) (h+ ¢+ d).

The reader may easily veritv that the size of the unfolding of such
a net (up to the cutoff points) is linear in the size of the original net.
In fact. it is essentially the same net. except the the place ¢ occurs n
times in the unfolding. Since all reachable markings of the original net
occur as configurations of the unfolding. the unfolding has a terminal
marking if and only if the formula is satishable. Hence 3-SAT is P-ume
reducible to reachability of a terminal marking of an unfolding. Since
the configuration representing the terminal marking can be guessed in
P-time in the size of the unfolding. and also rested in P-time. it follows
that the problem is in NP. and hence NP-complete.

Interestingly. however. the problem s readily solved in practice even

6.3. DEADLOCK AND OCCURRENCE NETS 187

let B be the set of the cutoff points, T, = §
while B is not empty do
let t the the element of B with the fewest spoilers
if ¢ has no spoilers. then backtrack
choose an element ¢ from the spoilers of ¢
add t' to T,
delete all transitions in conflict with 7,
end do

-1 O U - W -~

(v 4]

Figure 6.10: Procedure to detect terminal marking.

for verv large unfoldings, using an algorithm based on techniques of
constraint satisfaction search. The key observation which leads to this
algorithm is that there is no terminal marking exactly when all config-
urations the unfolding can reach some configuration containing a cutoff
point. This is simply because if there is no terminal marking, then all
configurations can reach a configuration which is arbitrarily large. A
configuration C’ can reach a configuration containing transition ¢’ if
and only if the union of ¢’ and the local configuration of ¢’ is a config-
uration. If it is not. then no set containing C' and ¢’ is a configuration.
If the union is not a configuration. we will say that " and ' are in
conflict. Hence. there is a terminal marking if and only if there is a
configuration which is in conflict with every cutoff point. The search
for such a configuration can be carried out using branch and bound
techniques. For example. if a configuration €’ is in conflict with a cut-
off point ¢, there must be a transition ¢| € C’ which is in contlict with
some transition in the local configuration of ¢. Such a transition t{ will
be called a spoiler of t'.

There exists a configuration in conflict with all of the all of the
cutoff points (equivalently, there exists a terminal marking) if and only
if there exists a configuration containing a spoiler for every cutoff point.
The set of spoilers contained in this configuration will be called 7,. The
algorithm of figure 6.10 uses branch and bound techniques to find such
a set T, if one exists.

188 CHAPTER 6. A PARTIAL ORDER APPROACH

Note that in line 3 of the procedure, the cutoff point with the small-
est number of spoilers is chosen so that the number of choices in line 5
is minimized. Whenever a spoiler for a given cutoff point is chosen to
belong to T, in line 3, everything in conflict with T, is eliminated from
future consideration in line 7. Note that the cutoff points in conflict
with T, are also eliminated, which cuts down on the amount of future
branching. Whenever there is a cutoff point with no remaining spoilers.
the procedure backtracks. from line 4 to the most recent occurrence of
line 5 where there are remaining choices. If there are no remaining
choices. the procedure fails. Of course. when backtracking occurs. the
the net is also returned to the state it was in at the point where ex-
ecution is being resumed. This backtracking is easily implemented by
keeping a stack of the remaining choices for #' in each iteration of the
loop. and marking each transition in the net with the level of the stack
at the time it was “removed”. Interestingly. if the procedure terminates
successfully. the remaining net has the property that every path leads to
a terminal marking of the original net .V'. This makes it straightforward
to extract a path leading to a terminal marking.

Obviously. because of the backtracking. this procedure is exponen-
tial (as it must be. if P # NP). However. this is only the worst case.
The dining philosophers serve as an example of a case in which the
exponential complexity is avoided. In fact. the procedure finds the ter-
minal marking in time which is linear in the number of philosophers.
This is easily seen by examining the untolding ot the Dining Philoso-
phers net in figure 6.4. There is one cutoff point in this net for each
process. Initially. each of these transitions has two spoilers. which cor-
respond to the two resources required to enter the critical region being
granted to the two neighboring processes. Regardless of which cutolf
point is used first. the symmetry is then broken as the part of the net
in conflict with one of the two spoilers is removed. This removes. in
particular. the transition which granted one of the resources to the first
philosopher. hence one of its neighbors now has onlv one spoiler. so
there is only one choice available the next time line 5 is reached. Af-
ter this spoiler is added to T,. the remaining neighbor of the secon
philosopher now has only one spoiler. This process continues withowt
backtracking until it has come full circle and the terminal marking is
found. Note that if the cutoff point with the fewest spoilers were not

6.4. RELATION TO AI TECHNIQUES 189

chosen in line 3, the procedure might have examined an exponential
number of candidates for T, before a valid one was found.

In fact, using nets representing communication protocols as exam-
ples, this procedure has been successfully been applied to unfoldings
with more than 3000 transitions and 1000 cutoff points, where some
cutoff points had as many as 50 spoilers. It is clear that the branch
and bound technique quickly narrows down the number of choices in
these examples.

6.4 Relation to AI techniques

The occurrence net unfolding method. as applied to the coverability
problem. was inspired by so-called “least commitment” strategies for
Al planning problems, especially nonlinear planning techniques. Like
these strategies, the method falls into the category of searching in the
space of solutions (ie.. covering sequences for a given set), rather than
the space of the problem (ie., the reachable markings). Each partially
constructed unfolding represents some set of possible partial solutions
which may be extended to a complete solution. As in other constraint
satisfaction search methods. the method tries to eliminate as early as
possible those partial solutions which cannot be extended to complete
solutions. This is done in the unfolding procedure by the elimination
of candidate transitions which have no local configuration. and also
by the cutoff points. which effectively discard those partial solutions
which cannot be extended to a lowest cost (ie.. fewest transition) so-
lution. This is done without unnecessarily committing to the order of
independent transitions. This makes the unfolding method somewhat
similar to constraint posting methods used in non-linear planning. Both
methods construct fairly similar structures. although non-linear plan-
ners. such as NOAH [Sac77] only represent one partial solution. while
the occurrence net represents all partial solutions. Non-linear planners
attempt to detect conflicts and eliminate them by posting additional
constraints on the solution or by modifving elements of the solution.
Non-linear planners also use heuristics to guide them towards a solu-
tion. and hence sometimes overconstrain the solution space and require
backtracking. For this reason. they are heuristically efficient. but would

190 CHAPTER 6. A PARTIAL ORDER APPROACH

not be suitable for exhausting the solution space, as is required in au-
tomatic verification methods. In fact, NOAH is not even guaranteed to
find a solution where one exists. A later system called TWEAK [Cha87]
does guarantee a solution where one exists. but fails to terminate if no
solution exists. Since TWEAK does overconstrain the solution space.
exhaustive search could only be achieved by backtracking, even if a suit-
able termination condition were found. The unfolding procedure never
overconstrains the solution space, however. as conflicting transitions
may coexist in the unfolding. Hence. it does not backtrack.

6.5 Evaluation

When is unfolding a suitable strategy for problems in automatic veri-
fication? The most promising application is hazard checking for asvn-
chronous control circuits. In these circuits, the state explosion seems to
derive almost entirely from arbitrary interleavings of concurrent tran-
sitions. In such cases. the unfolding method can have a considerable
advantage over methods that search the entire state space. Note. how-
ever, that other methods based on partial orders are not necessarily
effective in reducing the state explosion for these circuits. because of
the aforementioned problem of determining when transitions of the net
are persistent.

[n general. any problem which can be posed in terms of coverability
or deadlock in a Petri net model is a possible application of the un-
folding method. In addition. it is possible that heuristically efficient
procedures can be found for deciding the existence of an infinite firing
path in some w-regular set. given an unfolding. In this case. specifi-
cations framed as linear time temporal logic formulas. or w-automata
could be evaluated.

Chapter 7

Conclusion

What we have seen in the preceding chapters is that Ordered Binary
Decision Diagrams can be used as a representation in a wide variety
of automatic verification algorithms. in order to cope with the state
explosion problem. This can be done in a unified way by represent-
ing the algorithms in the Mu-Calculus fixed point notation. For fairly
diverse families of regularly structured systems, the CTL model check-
ing algorithm was observed to run in time and space which increased
polynomially in the size of the system. while the number of reachable
states increased exponentially. These results bear out a theoretical re-
sult bounding the OBDD representation of the transition relation for
such systems. Standard automatic verification algorithms would be un-
suitable for these examples because their complexity is proportional to
the number of reachable states.

Using OBDD based techniques. and a language suitable for the ab-
stract modeling of digital systems. it was possible to verify a fairly
compiex industrial design for a cache consistency protocol. finding a
number of subtle errors in the process. The verification process is valu-
able not only because of the advantages of formalization and exhaustive
checking, but because it can find protocol errors more quickly than sim-
ulation. despite the exponential growth in states as the model increases
in size. The ability to isolate high level errors quickly shortens the loop
hetween design and verification. making it possible to experiment more
freely with alternative designs. and shortening the “critical path” from
conceptualization to implementation.

191

192 CHAPTER 7. CONCLUSION

By a technique of induction over processes. it is possible to prove
properties of a protocol which are independent of the number of pro-
cesses participating in the protocol. This type of proof requires a suf-
ficient understanding of the protocol on the part of the designer to
construct a process invariant. I[nvariants are difficult to find. but the
symbolic model checker provides an aid in this process by producing
counterexamples for unsound invariants. In the author’s opinion. find-
ing a process invariant for a protocol is not only of valie as a proof
technique -- the understanding of the protocol required to formulate
the invariant can lead to simpler and more elegant protocols. This is
another reason for formalizing and verifving a protocol before attempt-
ing to implement it.

The verification technique based on occurrence nets shows that QB-
DDs are not the only representation that can be used to avoid the state
explosion problem. There are. in fact. certain advantages to the occur-
rence net based method for the example presented. since the memory
usage is small. and no heuristic technique is required to produce a vari-
able ordering. Still. at this stage. the occurrence net methoc is certainiy
not as well advanced as the symbolic model checking method.

There are several areas where the current work falls short of the
goal of complete automatic verification of digital svstems. In the case
of the Gigamax protocol. an abstract model of the protocol was veri-
fied and not the actual implementation. Verification of the implemen-
tation would have been impossible due to a lack of formal models of
the components of the system (e.. standard devices. such as memories.
registers. programmable logic. central processing units. efe.). It such
models were available from the manulacturers. in principle the methods
described in chapter 5 could be used to show that the implementation
is simulated by the abstract model. Hierarchical reasoning of this kind
has been extensively studied by Kurshan [Kur37]. Unfortunatelv, sim-
ulation does not preserve existential C'TL properties such as absence
of deadlock. As mentioned previously. bisimulation equivalence. which
preserves all C'TL properties. is too strong for this purpose. since the
abstract models are necessarilv non-deterministic. and the actual im-
plementation cannot tand should not) exhibit this non-determinism.
A practical technique of abstraction which preserves existential CT1L
properties is needed if ex.stential properties are to be proved usine

193

hierarchical reasoning.

There is also a need for heuristic strategies for generating process
invariants in inductive proofs. Marelly and Grumberg view the design
of the invariant as part of the design of the protocol. This is a use-
tul point of view, but some automated help beyond the generation of
counterexamples would be useful for this purpose.

Finally, this work concentrates on how to solve the verification prob- -

-lem, once it has been formalized as the satisfaction of a temporal logic
formula by a finite model, or as an appropriate relation between finite
automata. There is, of course, a wide range of issues involved in for-
malizing the problem in the first place. For example, there is the ever
present danger that the specification itself is incorrect. In the case of
the very simple CTL formulas used to specify the Gigamax protocol,
this is perhaps not a severe problem. The abstraction that was used
to create a model for checking the sequential consistency property was.
however, not obviously correct.

In general, there is a clear need for complete mechanical checking
that the implementation of a processor or protocol matches the in-
tended architecture (user model). This requires first of all a definitive
model of the architecture - something that is currently lacking even for
standardized architectures in the public domain. Second there must be
a well defined criterion for determining what is a valid implementation
of the architecture. Loosely, an implementation of a processor is equiv-
alent to an architecture model if for all programs. the two machines
produce the same “answer”. However. for many reasons. this equiva-
lence cannot be directly stated in terms of equivalence of finite state
machines. For one. most modern CPU architectures have no explicitly
defined notion of input and output. It is not adequate to view input
and output as the sequence of loads or stores observed at the memory
interface, since this sequence will differ among implementations (espe-
cially if the implementations contain cache memories. which is often the
case). Solutions to the formalization problem are needed. but cannot
be obtained by studying theoretical models alone. It is necessary to
carefully consider what verification means in an engineering sense. as
well as a mathematical sense. ‘

Despite the shortcomings of current verification technology, it is
clear that there are at least small areas of the problem space tor which

194 CHAPTER 7. CONCLUSION

reasonable solutions exist, and these solutions can be put into practice
to positive effect in an industrial setting. Those involved in verification
research should perhaps take a closer look at engineering practice to
determine how well the verification solutions match up with real engi-
neering problems. This effort may lead not only to a more practical
theory of formal verification, but also to a rich source of theoretical
problems. '

Appendix A
Semantics of SMV.1

This appendix defines the semantics of programs in the language SMV.1.
which includes the subset SMV.0 plus the process keyword. In SMV.1.
we need to account for both the arbitrary interleaving of processes, and
the rules regarding when a variable may change value as a result of
executing a given process.

A.1 The model

The set N of names, is the set of all character strings made up of
the letters, the digits, the underscore and the minus sign characters,
beginning with a letter. The store L = Lv U Ly is made up of two
disjoint. countably infinite sets of locations Lv and Ly. We will call
the former the wvisible locations, and the latter the hidden locations.
The set of locations L is defined recursively. [t is the least set such
that

l.f ne N,thenn € Ly, and

(S

ifle Ly and n € NV, then {.n € Ly, and
3.ifle Ly, then .l € Ly.

The set of values V is the union of the integers in the range [—231, 23! —{]
and V. the set of names. A state z : L — V' is a function from locations
to values. Let S = L — V" be the set of all possible states.

195

196 APPENDIX A. SEMANTICS OF SMV'.1

If pis a declaration, then its denotation [p] is a quadruple (7T, I, R, C).
The T component is a partial function from L to the finite subsets of
V. If l is a location, then T'(l), when defined. is the type of [- the set
of values that can be assigned to location /. The component I C S is
the set of initial states. The component R C S x § is the transition
relation. An asynchronous process is identified with a location r. which
has the value | in a given state exactly when the process is executing
in that state. The component C C L x L is the set of pairs (r.!) such
that process r assigns the next value of location /.

A.2 Expressions

An expression denotes a function from states to finite subsets of 1.
according to the following rules:

L. If v is a value. then [v](x) = {¢}.
2. If lis a location, then [[](r) = {x()}.
3. If ¢y, e are expressions. and o i1s one ol
4. = % /.mod. > >=. <. <= = L. [.=>. <=>

then
e 0 e2}(x) = {o](er. e2) | 1y € fe (o). o2 € e})
4. If ¢ is an expression. then
CBeltor = {{cer e = Je](e)}
5. If €, e, are expressions.
ler union ¢ () = [] U [e)]

6. If €. ¢y are expressions.

[er in ooy = e 2 ea]

A.3. ASSIGNMENTS AND DEFINITIONS 197

The functions denoted by +, -, *, / are the usual functions of arith-
metic modulo 232. The function denoted by mod is the positive re-
mainder of division mod 2%2. The function denoted by the relational
operators >, >=, < and <= return 0 when the relation is false and 1 when
the relation is true. and are defined for numeric values only. For non-
numeric values, they return L. The equality operator = is defined for
all values. and returns 0 when they are unequal, and 1 when they are
equal. The functions denoted by the Boolean operators are & (for and).
| (for or). ! (for not), -> (for implies) and <-> (for logical equivalence)
are defined only for the values 0 and 1, and return L otherwise.

A.3 Assignments and definitions

There is no semantic difference between assignments and definitions.

If [is a location. and e is an expression. then the assignment [:= e:
denotes a quadruple (7.1, R.C), where

1. T=49

2. [=S

3. R={(z.y) € 5% | l(x) € e(2)}

1.C=0

The assignment next(!) := ¢: denotes a triple (T. 1. R) where
I. T=9
2. /=S
3. R={(r.y) € $?| v(running) = I(y) € e(r)}
+. €' = {(running, ()}

The assignment init(!) := e: denotes a triple (T, I. R) where
. T=10

2.0 ={ceS|lx)Eela)}
3. R =5?
0

LoC

198 APPENDIX A. SEMANTICS OF SMV.!1

A.4 Variable declarations
If ! is an identifier and vy, v,,..., U, are values, then
VAR ! : {v1,vq,...,0n};

denotes a quadruple (T, I, R,C) where

L T={(l,{v1,v2....,0})}

2. I={zeS|x() € {vi,va....ta})}

3. R={(z,y) € S| z(1),y(]) € {vr.02.....0a})}
1. C=0

A.5 Renaming

Let o : L — L be a function trom locations to locations. This in turn
induces a map ® on states, such that for all states x and locations (.

®(z)(1) = x(a(l)).
If M =(T.I,R.C). then let o(M) = (T'.I'".R'.C') where
L T'(o(h)) = T(D).
2. I'={c| ®(r) &€ I} and
3. R = {(z,y) | (®(z).®(y)) € R}.
4. C'={{al(r).o(l)) | (r.) € C}.
Note that the definition of T does not make sense if ® maps two loca-

tions with different types onto the same location. In this case. o(M) is
a type error.

A.6. PARALLEL COMPOSITION 199

A.6 Parallel composition

Let 1"11 = (Tl, Il,RhC'[) and 1"[2 = (Tz,['),, Rg, Cz) Let ny and Na be
two distinct names. For i € 1.2, let ¢i(l) = .n;d forall l € Ly and
6i(1) = { otherwise, and let M! = ¢(M;). The parallel composition
M = M, || M, is defined as follows:

L. T=T/UT,

(V]

LA=0Nn1
3. R=R’lﬂR-'z
4. C=CluC)

If dy.ds,....di are declarations. then [dy d; ... di] is the parallel

composition
[ded W Tdo] Nl - 1 [de]

A.7 Instantiation

Suppose that module A is defined as follows:

MODULE A(ny.n4,....0) D
where ny, ng,....ng are distinct names and D is a sequence of declara-
tions. We first consider the variable declaration VAR r : A(l}, I):
where r.ly,1,,.... i are visible locations. Let o be a renaming. such

that. for all [€ Lv.

. forall 1 < : < k: o(n;) =, and o(n;.l) = ;.1

2. o(.) = .1
3. foralln € V—{running. n.ns..... ni}. o(n) = r.n.and o(n.l) =
r.n.d.

4. o(running) = running, o(running./) = running.!

200 APPENDIX A. SEMANTICS OF SMV.1

Then [VAR 7 : A(l,la, ..., 1);] = (D).

Now we consider the declaration
VAR r : process A(ly,ly,...,);
Let ¢ be a renaming, such that, for all [€ Ly,

1. forall 1 <1< #&: ¢(n;) =1{;, and o(n;.l) = I;.1,

no

.foralln € N={ny,ny....n}. 0(n) = r'.n. and o(n.l) = .my.n.l
3. (1) =1
Then [VAR r : proceés Al L, . L)] = o(D).

A.8 Programs and interleaving
Suppose that module main is defined as follows:
MODULE main D

where D is a sequence of declarations and [D] = (T.I.R.C). The
number of processes executing in state r is

ne(z) = |{rl(z(r) = LA (r.l) € C}.
The set of legal interleaving states is
Sy={r €5 |n(r)=1}

The set of states in which location is constrained to remain unchanged
is

UD={zeS|Er:(r.DeClA-3r:l(r.1) € CA(z(r) =1)]}
The denotation of the program is a triple (T.I'. R'). where
I. '=1NnS5;.

2. R={zy)eRlzeSAVIeL (v el ()= 2()= y(0))}.

A.9. SPECIFICATIONS 201

A.9 Specifications

Each program is associated with a Kripke structure which determines
the truth value of CTL formulas in the specification. The atomic propo-
sitions in this case are all the Boolean valued expressions. The Kripke
structure associated with a program whose denotation is the quadruple
(T,1,R) is a Kripke model K = (S, R, L") where

l. S is the set of states defined above.
2. R is the transition relation. and

3. if e is an expression, then
L'(e) = {r € 5[[el(x) = {1}}

The specification is a formula f in C'TL with fairness constraints. It is
satisfied exactly when A.sg k= f for all sq € I.

202 APPENDIX A. SEMANTICS OF SMV.1

Bibliography

(AB86] J. Archibald and J. L. Baer. Cache coherence protocols:
Evaluation using a multiprocessor simulation model. ACM
Transactions on Computer Systems, 4(4):273-298, 1986.

[AkeT8] S. B. Akers. Binary decision diagrams. [EEE Trans. Com-
puters, C-27(6):509-516. August 1978.

(BAMPS81] M. Ben-Ari. Z. Manna, and A. Pnueli. The temporal logic of
branching time. In ACM Symp. Principles of Programming
Languages. pages 164-176, 1981.

(BBB*87] R.E. Bryant. D. Beatty, Ix. Brace, K. Cho. and T. Sheffler.
COSMOS: A compiled simulator for MOS circuits. In 24th
Design Automation Conference, 1987.

(BBS90] Derek L. Beatty. Randal E. Bryant. and Carl-Johan H.
Seger. Synchronous circuit verification by symbolic sim-
ulation: An illustration. In Advanced Research in VLSI:
Proceedings of the Sicth MIT Conference. April 1990.

(BCD36] M. C. Browne. E. M. Clarke. and Dill. Automatic verifica-
tion using temporal logic: Two new examples. In George J.
Milne and P. \. Subramanyam, editors. Formal Aspects of
VLSI Design. Proceedings of the 1985 Edinburgh Workshop
on VLSI, pages 113-124. North-Holland. 1986.

(BCDMS6] M. C. Browne, E. M. (larke. D. L. Dill. and B. Mishra.
Automatic verification of sequential circuits using temporal
logic. [EEE Transactions on Computers. C-35(12):1035-
1044. 1986.

203

204

[BCGS6]

[BCGS7]

[BCL91a]

[BCLI1b]

[BCM*90]

[BF89a|

[BF89h)

[Bil87]

BIBLIOGRAPHY

M.C. Browne, E. M. Clarke, and O. Grumberg. Reasoning
about networks with many identical finite state processes.
In ACM Symp. Principles of Distributed Computing 3. 1986.

M.C. Browne, E. M. Clarke, and O. Grumberg. Character-
izing kripke structures in temporal logic. Technical Report

87-104, Carnegie-Mellon University. Computer Science De-

partment, 1987.

Jerry R. Burch, Edmund M. Clarke. and David E. Long.
Representing circuits more efficiently in symbolic model
checking. In Proceedings of the 28th ACM/IEEE Design Au-
tomation Conference. San Francisco. California. June 1991.

Jerry R. Burch, Edmund M. Clarke. and David E. Long.
Symbolic model checking with partitioned transition rela-
tions. In A. Halaas and P. B. Denyer. editors. Proceedings
of the IFIP International Conference on Very Large Scale
Integration. Edinburgh. Scotland. August 1991.

J. R. Burch. E. M. Clarke. K. L. McMillan. D. L. Dill.
and J. Hwang. Svmbolic model checking: 10%° states and
bevond. In Proceedings of the Fifth Annual Symposium on
Logic in Computer Science. June 1990.

S. Bose and A. Fisher. Verifying pipelined hardware using
symbolic logic simulation. In IFEE"Internationa Confer-
ence on Computer Design. 1989.

Soumitra Bose and Allan L. Fisher. Automatic verifica-
tion of synchronous circuits using symbolic logic simulation
and temporal logic. In Luc Claes.n. editor. Proceedings of
the IMEC-IFIP International Workshop on Applied Formal
Methods For Correct VLSI Design. pages 759-76-1. Novem-
ber 1989.

J. P. Billon. Perfect normal torms for discrete functions.

Technical Report 37019. BULL. March 1937.

BIBLIOGRAPHY 205

(Bry86|

[Bry88|

[Bry91]

- [BS90]

(Bur34|

(CBMS9)

[CDK90]

R. E. Bryant. Graph-based algorithms for boolean function
manipulation. [EEE Transactions on Computers, C-35(8),
1986.

Randal E. Bryant. Verifying a static ram design by logic
simulation. In Jonathan Allen and F. Thomson Leighton,
editors, Advanced Research in VLSI: Proceedings of the
Fifth MIT Conference, pages 335-349. MIT Press, 1988.

R. E. Bryant. On the complexity of VLSI implementations
and graph representations of boolean functions with appli-
cation to integer multiplication. [EEE Trans. Computers,
40(2):205 - 213, February 1991.

Randal E. Bryvant and Carl-Johan Seger. Formal verification
of digital circuits using symbolic ternary system models. In
Robert Kurshan and Edmund M. Clarke, editors, Workshop
on Computer-Aided Verification, New Brunswick. New Jer-
sey, June 1990. Center for Discrete Mathematics and The-
oretical Computer Science (DIMACS).

J. P. Burgess. Basic tense logoc. In D. Gabbay and F. Guen-
thner. editors. Handbook of Philosophical Logic. Volume
[I: Extensions of Classical Logic, pages 39-134. D. Reidel.
1984.

Olivier Coudert, Christian Berthet. and Jean Christophe
Madre. Verification of synchronous sequential machines
based on symbolic execution. In Joseph Sifakis. editor.
Automatic Verification Methods for Finite State Systems.
International Workshop. Grenoble. France, volume 407 of

Lecture Notes in Computer Science. Springer-Verlag, June
1989.

E. M. Clarke. [. A. Draghicescu. and R. P. Kurshan. A uni-
fied approach for showing language containment and equiv-
alence between various types of w-automata. In Fifteenth
Colloquium on Trees in Algebra and Programming, volume

206

[CES81a]

[CES1b]

[CESS6]

[CGK89)

(CGLY?]

[Cha87]

(CHPPS7]

BIBLIOGRAPHY

431 of Lecture Notes in Compulcr Science, Copenhagen.
Denmark, May 1990. Springer-Verlag.

E. M. Clarke and E. A. Emerson. Characterizing properties
of parallel programs as fixpoints. In Seventh International

Collogium on Automata. Languages. and Programming. vol-
ume 85 of LNCS, 1981.

E. M. Clarke and E. A. Emerson. Synthesis of synchroniza-
tion skeletons for branching time temporal logic. In Dexter
Kozen, editor. Logic of Programs: Workshop. volume 131
of Lecture Notes in Computer Science. Yorktown Heights.
New York. May 1931. Springer-Verlag.

E. M. Clarke, E. A. Emerson. and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Transactions on Programming
Languages and Systems. 3(2):24-1-263. 1986.

E. M. Clarke. O. Grumberg. and R. P. Kurshan. A\ svn-
thesis of two approaches for verifving finite state concurrent
systems. In Logic at Botik 'S9. Symposium on Logical Foun-
dations of Computer Science. volume 363 of Lecture Notes
in Computer Science. Springer-Verlag. Julv 1939,

Edmund M. Clarke. Orna Grumberg. and David E. Long.
Model checking and abstraction. In Proceedings of the An-
nual ACM Symposium on Principles of Programming Lan-
guages. January 1992,

D. Chapman. Planning for conjunctive goals. Artificial
[ntelligence. 32:333-377. 1987,

P. Caspi. N. Halbwachs. D. Pilaud. and J. \. Plaice. Lus-
tre. 'a declarative language for programming svnchronous
svstems. In [{th ACM Symp. on Principles of Program-
ming Languages. January 1987,

BIBLIOGRAPHY 207

[CLM89a]

[CLMS9b]

[CMSS]

[CMBY]

[Coudl]

(DCS6]

(Dilgs]

[EL36]

E. M. Clarke, D. E. Long, and K. L. McMillan. Composi-
tional model checking. In Proceedings of the Fourth Annual
IEEE Symposium on Logic in Computer Science, 1989.

E. M. Clarke, D. E. Long, and K. L. McMillan. A lan-
guage for compositional specification and verification of fi-
nite state hardware controllers. In 9th International Sym-
posium on Hardware Description Languages and their Ap-

plications, 1989.

K. M. Chandy and J. Misra. Parallel program design : a
foundation. Addison-Wesley, 1988.

Olivier Coudert. Jean Christophe Madre. and Christian
Berthet. Verifying temporal properties of sequential ma-
chines without building their state graphs. In E. M. Clarke
and R. P. Kurshan. editors, Computer Aided Verification.
’90. volume 3 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. 1991.

O. Coudert. SIAM: une boite a outils pour la preuve
formelle de systémes sequentiels. PhD thesis. Ecole Na-
tionale Supérieure des Télécommunications, 1991.

D. L. Dill and E. M. Clarke. Automatic verification of asvn-

chronous circuits using temporal logic. /EE Proceedings. Pt.
E, 133(5):276-282. September 1986.

D. Dill. Trace theory for automatic hierarchical verifica-
tion of speed-independent circuits. Technical Report 33-

119. Carnegie Mellon University, Computer Science Dept.
1988.

E. A. Emerson and C.-L. Lei. Efficient model checking in
fragments of the propositional mu-calculus. In Proceedings
of the Second Annual Symposium on Logic in Computer Sci-
ence. [EEE Computer Society Press, June 1986.

208

[FBS9]

[FMK90]

(GL91]

[God90]

[GS]

[GS91]

(GW91]

[Hoa6Y)]

(KC90]

BIBLIOGRAPHY

Allan L. Fisher and Randal E. Bryant. Performance of COS-
MOS on the IFIP workshop benchmarks. In Proceedings of
IMEC Conference, 1989.

M. Fujita, Y. Matsunaga, and T Kakuda. Automatic
and semi-automatic verification of switch-level circuits with
temporal logic and binary decision diagrams. In [CCAD.
pages 38-41, 1990.

Orna Grumberg and David E. Long. Model checking and
modular verification. In J. (. M. Baeten and J. F. Groote.
editors. Proceedings of CCONCUR '91: 2nd International
Conference on Concurrency Theory. volume 327 of Lecturt
Notes in Computer Science. Springer-Verlag. August 1991.

P. Godefroid. Using partial orders to improve automatic
verification methods. In IVorkshop on Computer Aided Ver-
ification. 1990.

S. M. German and \. P. Sistla. Reasoning about svstems
with many processes. (Tl Laboratories Inc.. Walthan.
Massachusetts.

Susanne Gral and Bernhard Steffen. (‘ompositional min-
imization of finite state svstems. In Robert kurshan and
Edmund M. Clarke. editors. Computer-Awded Verification.
Proceedings of the (990 Workshop. volume 3 of DIMACS
Sertes in Discrete Mathcmalics and Theoretical Compuler
Science. American Mathematical Societv. 1991,

P. Godefroid and P. Wolper. .\ partial approach to model
checking. In LICS. 1991.

(". A. R. Hoare. \n axiomatic basis for computer program-

ming. Comm. ACM. 12:576-330.533. October 196Y.

S. Kimura and E. M. Clarke. .\ parallel algorithm for con-
structing binary decision diagrams. In (990 [EEE [nterna-
tional Conference on Computer Design. September 1990,

BIBLIOGRAPHY 209

(KM89)

[Kro87]
[Kur35)

[Kur86)

[(Kur37)

[LN91]

[LPSS]

[LTN90]

[Mar33|

[MB59)

R. Kurshan and K. L. McMillan. A structural induction
theorem for processes. In ACM Symposium on Principles
of Distributed Computing, Edmonton, Alberta, 1989.

Fred Kroger. Temporal Logic of Programs. Springer-Verlag,
1987. '

R. P. Kurshan. Modelling concurrent processes. In Symp.
in Applied Math. 31. pages 45-57. 1985.

R. P. Kurshan. Testing containment of w-regular languages.
Technical Report 1121-861010-33-TM, Bell Laboratories.
1986.

R. P. Kurshan. Reducibility in analysis of coordination. In
LNCS, volume 103. pages 19-39. Springer- Verlag, 1987.

B. Lin and A. R. Newton. Efficient symbolic manipula-
tion of equivalence relations and classes. In IMEC-IFIP In-
ternational Workshop on Formal Methods in VLSI Design.
Miami, Florida. 1991.

Orna Lichtenstein and Amir Pnueli. Checking that finite
state concurrent programs satisfy their linear specification.
In Conference Record of the Twelfth Annual ACM Sympo-
stum on Principles on Programming Languages. 1985.

B. Lin. H. J. Touati. and A. R. Newton. Don’t care min-
imization of multi-level sequential logic networks. In /(-
CAD. pages 114-417. 1990.

A. J. Martin. The design of a self-timed circuit for dis-
tributed mutual exclusion. In Henry Fuchs. editor. 1985
Chapel Hill Conference on VLSI, pages 245-260. Computer
Science Press. 1985.

D. E. Muller and W. S. Bartky. A theory of asynchronous
ciccuits. In The Annals of the Computation Laboratory of

210

[Mil8o]

[Milg3)

[MOS1]

[MP81]

[MS91]

[NH84]

[NPWS]

[ParT74]

[PL89]

BIBLIOGRAPHY

Harvard University. Volume XXIX: Proceedings of an In-
ternational Symposium on the Theory of Switching, Part I,
pages 204-243. Harvard University Press, 1959.

R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer-
Verlag, 1980.

G. J. Milne. Circal, calculus for circuit descriptions. [nte-
gration, 1:121-160, 1983.

Y. Malachi and S. S. Owicki. Temporal specifications of self-
timed systems. In H. T. Kung. B. Sproull. and G. Steele.
editors, VLSI Systems and Computations. 1981.

Z. Manna and A. Pnueli. Verification of concurrent pro-
grams: the temporal framework. In R. S. Bover and J. S.
Moore, editors. The Correctness Problem in Computer Sci-
ence, pages 215-273. 1931.

K.L. McMillan and J. Schwalbe. Formal verification of the
Encore Gigamax cache consistency protocol. In [Interna-
tional Symposium on Shared Memory Multiprocessors, 1991.

R. De Nicola and M. Hennessy. Testing equivalences for
processes. Theoretical Computer Science. 34(33). 1984.

M. Nielsen. G. Plotkin. and G. Winskel. Petri nets. event
structures and domains. part [. Theoretical Computer Sci-
ence, 13:835-103. 1981. :

David Park. Finiteness is mu-ineffable. Theory of Compu-
tation Report No. 3. The University of Warwick. 1974.

D. K. Probst and H. F. Li. Abstract specification. compo-
sition. and proof of correctness of ‘delay-insensitive circuits
and systems. Technical report. C'oncordia University. Dept.
of Computer Science. 193Y.

BIBLIOGRAPRY 211

[PL90]

| (Pnu77]

[Pnu36)

(Qs81]

(RUTI|
[SacT7]
[Sei80a)

[Sei80b}

[SG8Y|

[Smu63|

[Tar35]

D. K. Probst and H. F. Li. Using partial order semantics to
avoid the state explosion problem in asynchronous systems.
In Workshop on Computer Aided Verification, 1990.

A. Pnueli. The temporal semantics of concurrent programs.

In 18th Symposium on Foundations of Computer Science,
1977.

A. Pnueli. Applications of temporal logic to the specification
and verification of reactive systems: A survey of current
trends. In Lecture Notes in Computer Science, volume 224,
pages 510-584. Springer-Verlag, 1986.

J. P. Quielle and J. Sifakis. Specification and verification of
concurrent systems in CESAR. In Proceedings of the Fifth

International Symposium in Programming, 1981.

N. Rescher and A. Urquhart. Temporal Logic. Springer-

Verlag, 1971.

E. Sacerdoti. A Structure for Plans and Behavior. American
Elsevier, 1977.

C. L. Seitz. Ideas about arbiters. Lambda, 10(14), 1930.

C. L. Seitz. System timing. In Carver Mead and Lynn
Conway, editors. [ntroduction to VLSI Systems. pages 213~
262. Addison-Wesley, 1980. '

Z. Shtadler and O. Grumberg. Network grammars. com-
munication behaviors and automatic verification. In Work-
shop on Automatic Verification Methods for Finite State
Systems. LNCS. pages 151-163. Springer-Verlag, 1939.

R. M. Smullyan. First Order Logic. Springer-Verlag, 1968.

A. Tarski. .\ lattice-theoretical fixpoint theorem and its
applications. Pacific .J. Vath.. 5:285-309. 1955.

212

[TBKY1]

[Tho84]

[TSL*+90]

[Val89]

[Val90]

[vdS83]

[WLS9]

[Wol83]

[YTK91]

BIBLIOGRAPHY

H. J. Touati, R. K. Brayton, and R. P. Kurshan. Test-
ing language containment for w-automata using BDD’s. In
IMEC-IFIP International Workshop on Formal Methods in
VLSI Design, Miami, Florida, 1991.

R. H. Thomason. Combinations of tense and modality. In
D. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic. Volume II: Extensions of Classical Logic.
pages 89-134. D. Reidel, 1984.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton. and
A. Sangiovanni-Vincentelli. Implicit state enumeration of
finite state machines using BDD’s. In ICCAD. pages 130-
133. 1990.

A. Valmari. Stubborn sets for reduced state space genera-
tion. In 10th Int. Conf. on Application and Theory of Petri
Nets, 1989.

A. Valmari. A stubborn attack on the state explosion prob-
lem. In Workshop on Computer dided Verification. 1990.

Jan L. A. van de Snepscheut. Trace Theory and VLSI de-
stgn. PhD thesis. Department of Computer Science. Eind-
hoven University of Technology. October 1983.

P. Wolper and V Lovinfosse. Verifying properties of large
sets of processes with network invariants. In Workshop on
Automatic Verification Methods for Finite State Systems.
LNCS, pages 63-80. Springer-Verlag. 1939.

Pierre Wolper. Temporal logic can be more expressive. [n-
formation and Control. 56:72-99. 1933.

Tomohiro Yoneda. Yoshihiro Tohma. and Yutaka Kondo.
Acceleration of timing verification method bhased on time
Petri nets. Systems and Computers in Japan, 22(12):37-52.

1991.

